chỗ \(\left(1+\dfrac{1}{2}\right)\)sửa lại thành \(\left(1+\dfrac{1}{2}x\right)\)
chỗ \(\left(1+\dfrac{1}{2}\right)\)sửa lại thành \(\left(1+\dfrac{1}{2}x\right)\)
Thực hiện phép tính (tính nhanh nếu có thể):
4) \(4\cdot\left(\dfrac{-1}{2}\right)^3+\left|-1\dfrac{1}{2}+\sqrt{\dfrac{9}{4}}\right|:\sqrt{25}\)
5) \(\left[6-3\cdot\left(\dfrac{-1}{3}\right)^2+\sqrt{\dfrac{1}{4}}\right]:\sqrt{0,\left(9\right)}\)
a,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right)\cdot\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
b, \(2:\left(\dfrac{1}{2}-\dfrac{2}{3}\right)\)
\(A=\left(2\dfrac{1}{3}+3\dfrac{1}{2}\right):\left(-4\dfrac{1}{6}+3\dfrac{1}{7}\right)+7\dfrac{1}{2}\)
\(B=4\dfrac{25}{16}+25\cdot\left(\dfrac{9}{16}:\dfrac{125}{64}\right):\left(-\dfrac{27}{8}\right)\)
giải hộ mk nhanh nhanh nhoa ☺
Tìm x biết :
\(\dfrac{3}{\left(x+2\right)\cdot\left(x+5\right)}+\dfrac{5}{\left(x+5\right)\cdot\left(x+10\right)}+\dfrac{7}{\left(x+10\right)\cdot\left(x+17\right)}=\dfrac{x}{\left(x+2\right)\cdot\left(x+17\right)}\) Vs x \(\notin\){-2;-5;-17;-10}
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
Thu gọn các đơn thức :
a) \(\left(\dfrac{a}{2}\right)^33xy\left(4a^2x^3\right)\left(\dfrac{13}{3}ay^2\right)\)
b)\(\left(2x^2y^3z^4\right)^k\left(-\dfrac{1}{2}xy^2\right)^2\)
c) \(\left(\dfrac{7}{3}x^2y^3\right)^{10}\left(\dfrac{3}{7}x^5y^4\right)^{10}\)
Tìm các số nguyên x sao cho :
\(\left(x^2-1\right)\cdot\left(x^2-4\right)\cdot\left(x^2-7\right)\cdot\left(x^2-10\right)\) < 0
Rút gọn rồi tính gt biểu thức :
a ) \(\frac{ax^2\left(a-x\right)-a^2x\left(x-a\right)}{3a^2-3x^2}\) với \(a=\frac{1}{2};x=-3\)
b ) \(\frac{\left(ab+bc+ca+da\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}\) với \(a=-3;b=-4;c=2;d=3\).
a)tìm các cặp số nguyên x;y thỏa mãn (2x-)(x+1)=|y+1|
b)\(\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+\left|x+\dfrac{1}{5.7}\right|+...+\left|x+\dfrac{1}{97.99}\right|=50x\)
cho A=\(\left(\dfrac{1}{2^2}-1\right).\left(\dfrac{1}{3^2}-1\right).\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{100^2}-1\right)\)hãy so sánh A với \(\dfrac{-1}{2}\)