a) \(\left|x\right|\) + \(\left|-x\right|\) = 3 - \(x\)
\(\Rightarrow\) \(x+x\) = 3 - \(x\)
\(\Rightarrow\) \(x+x+x\) = 3
\(\Rightarrow\) 3\(x\) = 3
\(\Rightarrow\) \(x\) = 1
b) Ta có : \(\frac{x}{6}\) - \(\frac{1}{y}\) = \(\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{y}\) = \(\frac{x}{6}\) - \(\frac{1}{2}\)
\(\Rightarrow\) \(\frac{1}{y}\) = \(\frac{x}{6}\) - \(\frac{3}{6}\)
\(\Rightarrow\) \(\frac{1}{y}\) = \(\frac{x-3}{6}\)
\(\Rightarrow\) 1 . 6 = \(y\)( \(x\) - 3)
\(\Rightarrow\) 6 = \(y\)(\(x\) - 3)
\(\Rightarrow\) \(y\)(\(x\) - 3) ϵ Ư(6)
\(y\) | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
\(x-3\) | 6 | 3 | 2 | 1 | -6 | -3 | -2 | -1 |
\(x\) | 9 | 6 | 5 | 4 | -3 | 0 | 1 | 2 |