Bài 4. ( 2 điểm) Cho phương trình (m là tham số)
1/ Chứng minh phương trình luôn có hai nghiệm phân biệt với mọi m
2/ Tìm các giá trị của m để phương trình có hai nghiệm trái dậu
3/ Với giá trị nào của m thì biểu thức A = x12 + x22 đạt giá trị nhỏ nhất. Tìm giá trị đó
Cho phương trình:\(x^{2-}\left(m+5\right).x-m+6=0\)(1),( x là ẩn,m là tham số)
a.Giải phương trình với m=1
b.Với giá trị nào của m thì phương trình (1) có 2 nghiệm x1,x2 thỏa mãn:
\(x_1^2+x_1x_2^2=24\)
Cho phương trình \(x^2-3x+1=0\).Gọi \(x_1\)và \(x_2\)là 2 nghiệm của phương trình.Hãy tính giá trị biểu thức A=\(x^2_1+x^2_2\)
1.Cho phương trình:\(x^2-3x+m-2=0\)(1)
a.Giải phương trình (1) với m=-8
b.Tìm m để phương trình (1) có 2 nghiệm phân biệt \(x_1\);\(x_2\)thỏa mãn \(x^3_1-x^3_2+9x_1x_2=81\)
Cho hệ phương trình:
\(\left\{{}\begin{matrix}mx-y=1\\4x-my=2\end{matrix}\right.\)
Tìm m để hệ phương trình đã cho có 1 nghiệm duy nhất
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Cho hệ pt: \(\left\{{}\begin{matrix}x+my=3\\mx+4y=6\end{matrix}\right.\)
Gọi nghiệm của hệ phương trình là (x;y). Tìm m để pt có nghiệm x > 1, y > 0
Tìm m để phương trình \(x^2+2\left(m-1\right)x+2m-3=0\)
có hai nghiệm phân biệt
x1; x2 thỏa mãn 2x1 + 3x2 > 4.
Cho phương trình . Dùng Vi-ét để tìm nghiệm x2 rồi tìm giá trị của m
a, \(4x^2+3x-m^2+3m=0\) ( \(x\)1 = -2)
b, \(3x^2-2(m-3)x+5=0\) ( \(x\)1 = \(\dfrac{1}{3}\) )