Ôn tập Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Thị Huyền

Ai giúp mình với mai mình thi rồi

a: Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MA=MB

=>M nằm trên đường trung trực của AB(1)

ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

b: Ta có; ΔOAM vuông tại A

=>\(OA^2+AM^2=OM^2\)

=>\(AM^2=13^2-5^2=144\)

=>AM=12(cm)

Xét (O) có

DA,DC là các tiếp tuyến

Do đó: DA=DC và OD là phân giác của góc AOC

Xét (O) có

EB,EC là các tiếp tuyến

Do đó: EB=EC và OE là phân giác của góc BOC

Chu vi tam giác MDE là:

MD+DE+ME

=MD+DC+CE+EM

=MD+DA+ME+EB

=MA+MB

=2MA

=24(cm)

c: Xét (O) có

\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC

\(\widehat{ANC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{MAC}=\widehat{ANC}\)

=>\(\widehat{MAC}=\widehat{MNA}\)

Xét ΔMAC và ΔMNA có

\(\widehat{MAC}=\widehat{MNA}\)

\(\widehat{AMC}\) chung

Do đó: ΔMAC~ΔMNA

=>\(\dfrac{MA}{MN}=\dfrac{MC}{MA}\)

=>\(MA^2=MN\cdot MC\)

Xét ΔOAM vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=MN\cdot MC\)

=>\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)

Xét ΔMHC và ΔMNO có

\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)

góc HMC chung

Do đó: ΔMHC~ΔMNO

=>\(\widehat{MHC}=\widehat{MNO}\)

mà \(\widehat{MNO}=\widehat{OCN}\)(ΔOCN cân tại O)

nên \(\widehat{MHC}=\widehat{OCN}\)


Các câu hỏi tương tự
Aa Minh
Xem chi tiết
Hương
Xem chi tiết
Đinh Tiến Phong
Xem chi tiết
NGUYỄN Gia Hạo
Xem chi tiết
Phúc Tiến
Xem chi tiết
Momozono Hisaki
Xem chi tiết
Phúc Tiến
Xem chi tiết
Phúc Tiến
Xem chi tiết
Phúc Tiến
Xem chi tiết