a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có; ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=13^2-5^2=144\)
=>AM=12(cm)
Xét (O) có
DA,DC là các tiếp tuyến
Do đó: DA=DC và OD là phân giác của góc AOC
Xét (O) có
EB,EC là các tiếp tuyến
Do đó: EB=EC và OE là phân giác của góc BOC
Chu vi tam giác MDE là:
MD+DE+ME
=MD+DC+CE+EM
=MD+DA+ME+EB
=MA+MB
=2MA
=24(cm)
c: Xét (O) có
\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
\(\widehat{ANC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{MAC}=\widehat{ANC}\)
=>\(\widehat{MAC}=\widehat{MNA}\)
Xét ΔMAC và ΔMNA có
\(\widehat{MAC}=\widehat{MNA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC~ΔMNA
=>\(\dfrac{MA}{MN}=\dfrac{MC}{MA}\)
=>\(MA^2=MN\cdot MC\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\)
=>\(MH\cdot MO=MN\cdot MC\)
=>\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)
Xét ΔMHC và ΔMNO có
\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)
góc HMC chung
Do đó: ΔMHC~ΔMNO
=>\(\widehat{MHC}=\widehat{MNO}\)
mà \(\widehat{MNO}=\widehat{OCN}\)(ΔOCN cân tại O)
nên \(\widehat{MHC}=\widehat{OCN}\)