\(S_n=u_1+u_2+...+u_n\)
\(S_n=u_1+u_1q+u_1q^2+...+u_1q^{n-1}\)
\(=u_1\left(1+q+q^2+...+q^{n-1}\right)\)
Have: \(q^n-1=\left(q-1\right)\left(q^{n-1}+q^{n-2}+...+1\right)\)
\(\Rightarrow1+q+q^2+...+q^{n-1}=\dfrac{q^n-1}{q-1}\)
\(\Rightarrow S_n=u_1\dfrac{q^n-1}{q-1}\)
hhy-chy
Ta có: \(qS_n=qu_1+qu_2+...+qu_{n-1}+qu_n\) \(=u_2+u_3+...+u_n+u_{n+1}\)
\(S_n-qS_n=u_1-u_{n+1}=u_1-u_1q^n=u_1\left(1-q^n\right)\)
Hay: \(\left(1-q\right)S_n=u_1\left(1-q^n\right)\)
mà q khác 1 từ đây suy ra điều phải chứng minh.