\(\dfrac{1993+1993.1994}{1992.1995+1995}\)
=\(\dfrac{1993.1+1993.1994}{1992.1995+1995.1}\)
=\(\dfrac{1993\left(1+1994\right)}{1995\left(1992+1\right)}\)
=\(\dfrac{1993.1995}{1995.1993}\)
=1
\(=\dfrac{1993.1+1993.1994}{1992.1995+1995.1}\)
\(=\dfrac{1993\left(1+1994\right)}{1995\left(1992+1\right)}\)
\(=\dfrac{1993.1995}{1995.1993}\)
=1
\(\dfrac{1993+1993\cdot1994}{1992\cdot1995+1995}\\ =\dfrac{1993\cdot1+1993\cdot1994}{1992\cdot1995+1995\cdot1}\\ =\dfrac{1993\left(1+1994\right)}{1995\left(1992+1\right)}\\ =\dfrac{1993\cdot1995}{1995\cdot1993}\\ =1\)
a \(\dfrac{1993+1993.1994}{1992.1995+1995}\)
= \(\dfrac{1993.1+1993.1994}{1992.1995+1995.1}\)
= \(\dfrac{1993.\left(1+1994\right)}{1995.\left(1992+1\right)}\)
= \(\dfrac{1993.1995}{1995.1993}\)
= 1