a)
Ta có:
\(2xy=(x+y)^2-(x^2+y^2)=2^2-8=-4\Rightarrow xy=-2\)
Vậy:
\(M=x^3+x^4+y^3+y^4=(x^3+y^3)+(x^4+y^4)\)
\(=(x+y)(x^2+y^2)-xy(x+y)+(x^2+y^2)^2-2x^2y^2\)
\(=2.8-(-2).2+8^2-2(-2)^2\)
\(=76\)
b)
\(M=x^2+y^2+2xy-4x-4y+3\)
\(=(x^2+xy)+(y^2+xy)-4(x+y)+3\)
\(=x(x+y)+y(x+y)-4(x+y)+3\)
\(=(x+y)(x+y)-4(x+y)+3\)
\(=5.5-4.5+3=8\)