1. Cho tam giác nhọn ABC hai đường cao BD và CE cắt nhau tại H. M ∈ HB, N ∈ HC sao cho \(\widehat{AMC}=\widehat{ANB}=90^o\). CMR AN=AM
cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R).Vẽ BD vuông AC tại D vẽ CE vuông AB tại E.BD và CE cắt nhau tại H.Vẽ đường kính AOK a)Chứng minh tứ giác BHCK là hình bình hành b)Chứng minh tứ giác BCDE nội tiếp đường tròn tâm I.Xác định vị trí điểm I c)chứng minh DE vuông AK d)Cho BAK=60.Tính theo R độ dài AH
Cho tam giác ABC (có ba góc nhọn) nội tiếp đường tròn (O) và tia phân giác của góc B cắt đường tròn tại M. Các đường cao BD và CK của ∆ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ADHK nội tiếp một đường tròn.
b) Chứng minh rằng OM là tia phân giác của góc AOC.
c) Gọi I là giao điểm của OM và AC. Tính tỉ số OI BH .
Cho ΔABC nhọn, các đường cao BD, CE (D ∈ AC, E ∈ AB). Đường tròn đường kính AC cắt đoạn thẳng BD tại M, đường tròn đường kính AB cắt đoạn thẳng CE tại N. Chứng minh rằng AM = AN.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BD;
CE và AF của tam giác ABC cắt nhau tại điểm H. Chứng minh rằng:
1) Góc DEC = Góc DBC.
2) CE.HC + BD.HB = BC 2
3) Đường thẳng DE vuông góc OA
Cho ΔABC nhọn (AB<AC) nội tiếp đường tròn (O) có hai đường cao BD và CE
a) Chứng minh tứ giác BEDC nội tiếp và ΔABC∼ΔADE
b) Tiếp tuyến tại B và C của đường tròn (O) cắt nhau tại M, OM cắt BC tại H.
Chứng minh AB.BH=AD.BM
c) AM cắt DE tại I. Chứng minh góc AIE= góc AHC
Cho tam giác nhọn ABC nội tiếp đường tròn (O) đường kính AF. Hai đường cao BD và CE cắt nhau tại H. C/minh;
a, Tứ giác BFCH là hình bình hành.
b, BC cắt HF tại M. C/minh: AH // OM và AH = 2 OM.
cho tam giác ABC nhọn hai đường cao BD va CE cắt nhau tại H.Vẽ đường tròn tâm O đường kính CH cắt BC tại F
a)
Cho tam giác ABC nhọn; các đường cao AK; BD; CE cắt nhau tại H
a, Chứng minh \(\dfrac{KC}{KB}=\dfrac{AC^2+CB^2-BA^2}{CB^2+BA^2-AC^2}\)
b, Giả sử: HK=\(\dfrac{1}{3}AK\) . Chứng minh rằng tanB.tanC=3
c, Giả sử \(S_{ABC}=120cm^2\) và \(\widehat{BAC}=60^0\) . Hãy tính diện tích của tam giác ADE?