Ta có: a//b(gt)
a⊥c(gt)
Do đó: b⊥c(định lí 2 từ vuông góc tới song song)
Vậy: chọn B
Ta có: a//b(gt)
a⊥c(gt)
Do đó: b⊥c(định lí 2 từ vuông góc tới song song)
Vậy: chọn B
Câu 1: Nếu a ⊥ b và b // c thì:
A. a ⊥ c B. a // c C. a // b D. c ⊥ b
Câu 2: Hai đường thẳng xx’, yy’ cắt nhau và trong các góc tạo thành có một góc bằng 90o, thì:
A. xx’ là đường trung trực của yy’ B. yy’ là đường trung trực của xx’ C. xx’ // yy’ D. xx’ ⊥ yy’
Câu 3: Phát biểu nào sau đây đúng?
A. Hai góc đối đỉnh luôn bằng nhau. B. Hai góc so le trong luôn bằng nhau. C. Hai góc đồng vị luôn bằng nhau. D. Hai góc trong cùng phía luôn bù nhau.
Câu 4: Nếu đường thẳng c cắt hai đường thẳng a và b thì số cặp góc đồng vị tạo thành là
A. 2 cặp. B. 3 cặp. C. 4 cặp. D. 5 cặp.
Câu 5: Hai đường thẳng không có điểm chung gọi là hai đường thẳng:
A. cắt nhau. B. song song C. trùng nhau D. vuông góc
Câu 6: Qua điểm M ở ngoài đường thẳng h, có:
A. Hai đường thẳng song song với h. B. Có ít nhất một đường thẳng song song với h. C. Vô số đường thẳng song song với h. D. Một và chỉ một đường thẳng song song với h.
: Nếu c a và b // a thì:
A. a// b. B. b//c. C c vuông góc với b. D. a vuông góc với b
Bài 1:cho ΔABC Vuông ở C ,có góc B=60 độ , tia phân giác của góc BAC cắt BC ở E,kẻ vuông góc với AB .(K thuộc AB ) ,kẻ BD vuông góc với AE (D thuộc AE)
Chứng minh rằng :a)AK=KB b)AD =BC
bài 2 :cho ΔABC cân tại A và hai đường trung tuyến BM,CN cắt nhau tại K
a)chứng minh ΔBNC=ΔCMB
b)chứng minh ΔBKC cân tại K
c)chứng minh BC < 4.KM
bài 3 :cho ΔABC vuông tại A có BD là phân giác ,Kẻ DE vuông góc BC (E thuộc BC).Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a)BD là trung trực của AE (BD vuông góc với AE)
b)DF=DC
c)AD<DC
d)AE // FC
*Làm và vẽ hình hộ mình với các bạn ơi.Mình đang rất vội (CẢM ƠN CÁC BẠN RẤT NHIỀU)*
Cho ba đường thẳng a ; b ; c . chọn đáp án đúng
A. Nếu a vuông góc với b và c vuông góc với b thì a vuông góc với c
B. Nếu a vuông góc với b và c song song với b thì a song song với c
C. Nếu a song song với b và b song song với c thì a vuông góc với c
D. Nếu a vuông góc với b và c song song vói b thì a vuông góc với c
Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D ( D AC) . Kẻ DE vuông góc với BC ( E BC)
a. Chứng minh: ABD = EBD.
b. Chứng minh: ABE là tam giác đều.
c. Tính độ dài cạnh BC.
d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
aVẽ tam giác ABC.Qua A vẽ AH vuông góc với BC (H thuộc BC).Từ H vẽ HK vuông góc với AC (K thuộc AC);Qua A vẽ đường thẳng song song với B (cắt AB tại E)
bChỉ ra một cặp góc so le trong bằng nhau,1 cặp góc đối đỉnh bằng nhau
c Chứng minh :AH vuông góc với EK
dQua A vẽ đường thẳng m vuông góc với AH
CMR:m song song với EK
Cho m⊥ n tại K. Vẽ đường thẳng P cắt m, n lần lượt tại A, B tạo ra 1 góc đỉnh B= 110 độ. Tính các góc đỉnh B còn lại.
Nếu a vuông góc b và c vuông góc b thì
Cho ΔABC cân tại A (∠A<90độ). Kẻ BD ⊥ AC (D ∈ AC), CE ⊥AB(E∈AB), BD cắt CE tại H a, C/m ΔABD=ΔACE b, C/m ΔBCH cân c, C/m ED// BC. d, AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm HM. C/mΔACM vuông