Chương I : Số hữu tỉ. Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Như Tố

a) Tìm các số a1 ,a2 ,a3 ,...,a9 biết:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

và a1+a2+a3+...+a9=90

b) Tìm x, biết rằng:

\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\)

Linh Trần
14 tháng 7 2017 lúc 13:56

a) \(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=....=\dfrac{a_9-9}{1}\)

\(=\dfrac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+...+a_9\right)-9-8-7-...-1}{45}\)

\(=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)

Từ đó => a1 = a2 = a3 = .... = a9 = 10

b) Áp dụng tính chất của dã tỉ số bằng nhau, ta có:

\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2+8y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)

\(\Rightarrow\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{24}\Rightarrow9+3x=24\)

\(\Rightarrow3x=15\)

\(\Rightarrow x=5\)

Vậy...

 Mashiro Shiina
14 tháng 7 2017 lúc 14:19

\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)

Dựa vào tính chất dãy tỉ số bằng nhau ta có:

\(=\dfrac{a_1-1+a_2-2+a_3-3+....+a_9-9}{9+8+7+.....+1}\)

\(=\dfrac{\left(a_1+a_2+a_3+.....+a_9\right)-\left(1+2+3++.....+9\right)}{9+8+7+.....+1}\)

\(=\dfrac{90-45}{45}=1\)

\(\Rightarrow a_1-1=9\Rightarrow a_1=10\)

\(\Rightarrow a_2-2=8\Rightarrow a_2=10\)

\(\Rightarrow a_3-3=7\Rightarrow a_3=10\)

\(.............................................\)

\(\Rightarrow a_9-9=1\Rightarrow a_9=10\)

\(\Rightarrow a_1=a_2=a_3=.....=a_{10}\)


Các câu hỏi tương tự
My Nguyễn
Xem chi tiết
Nhi
Xem chi tiết
Bùi Kim Ngân
Xem chi tiết
CÁ MẬP
Xem chi tiết
Nguyễn Thị Hải Yến
Xem chi tiết
Hoàng Giang
Xem chi tiết
Linh Trịnh
Xem chi tiết
nguyen hoang phuong anh
Xem chi tiết
Nguyen Ngoc Anh Linh
Xem chi tiết