bằng thước thẳng có chia đơn vị và thước đo hãy vẽ tam giác ABC ,biết AC = 2cm, \(\widehat{A}\) =90' , \(\widehat{C}\) =60'
Vẽ tam giác ABC có AB = AC = 6cm, BC = 2cm. Sau đó đo góc A để kiểm tra rằng \(\widehat{A}\) \(\approx\) 20o.
Các bạn giúp mình với, nhanh nhé !
a) Vẽ tam giác ABC biết góc A =90độ , AB = AC = 3 cm . Sau đó đo góc B và góc C .
Bài 1: Cho tam giác ABC có AB = AC, D thuộc AB, E thuộc AC để AD = AE. Gọi K là giao điểm BE và CD.
a) Chứng minh: BE = CD. b) tam giác KBD = tam giác KCE
Bài 2: Tam giác ABC có \(\widehat{A}\) = 90\(^o\), AB = AC. Qua A vẽ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Vẽ BH và CK vuông góc với d. Chứng minh:
a) AH = CK b) HK = BH + CK
Bài 3: Tam giác ABC có \(\widehat{A}\) = 60\(^o\),tia phân giác \(\widehat{B}\) cắt AC ở D, phân giác \(\widehat{C}\) cắt AB ở E, BD cắt CE tại I.
a) Tính \(\widehat{BIC}\)
B) Vẽ IK là phân giác của \(\widehat{BIC}\) (K thuộc BC). Chứng minh: IE = ID.
huhu m.n giúp mk vs nhé mai đi hc sớm r. thanks nhìu!!! lm câu nào cx đc.
Cho tam giác ABC có AB<AC góc A= 60độ, AH là tia phân giác của góc BAC
a, tính số đo góc BAH
b, lấy điểm K thuộc cạnh AC sao cho AK= AB. CM: tam giác AHB= tam giác AHK
c,CM: AH vuông góc với BK
d, Qua H vẽ đường thẳng vuông góc với AH cắt AC tại N và tia AB tại Q
CM rằng: AH là đường trung trực của QN
Cho tam giác ABC có \(\widehat{A}\) <90 độ. Vẽ ra phía ngoài tam giác đó hai đoạn thẳng AD vuông góc và bằng AB, AE vuông góc và bằng AC. Kẻ AH vuông góc với BC. CM: HA đi qua trung điểm DE
Cho \(\Delta\)ABC có \(\widehat{A}\)<90 độ. Vẽ ra phía ngoài tam giác đó 2 đoạn thẳng AD vuông góc và bằng AB ; AE vuông góc và bằng AC. Kẻ AH \(\perp\) BC. CM: HA đi qua trung điểm DE
Cho tam giác ABC có AB=AC, \(\widehat{A}\)=90. Vẽ cung tròn tâm B bán kính AB và cung tròn tâm C bán kính AB cắt nhau tại D. Chững minh rằng DB vuông góc với DC
Cho tam giác ABC có góc \(\widehat{B}>\widehat{C}\) . Kẻ AH vuông góc với BC. Kẻ tia phân giác AD của góc \(\widehat{BAC}\) (D \(\in\)BC)
a) Chứng minh rằng \(\widehat{HAD}=\frac{\widehat{B}-\widehat{C}}{2}\)
b) Tính \(\widehat{A}\), biết \(\widehat{HAD=15}\) và \(3\widehat{B}=5\widehat{C}\)