Bài 5: Khảo sát sự biến thiên và vẽ đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số

                                 \( y = -x^3 + 3x + 1\)

b) Dựa vào đồ thị (C), biện luận về số nghiệm của phương trình sau theo tham số \(m\).

                                \( x^3 - 3x + m = 0\)



 

qwerty
31 tháng 3 2017 lúc 10:28

a) Xét hàm số y = -x3 + 3x + 1. Tập xác định : R.

y' = -3x2 + 3 = -3(x2 - 1); y' = 0 ⇔ x = -1,x = 1.

Bảng biến thiên:

Đồ thị (C) như hình bên.

b) x3 - 3x + m = 0 ⇔ -x3 + 3x + 1 = m + 1 (1). Số nghiệm của (1) chính là số giao điểm của đồ thị (C) với đường thẳng (d) : y = m + 1.

Từ đồ thị ta thấy :

m + 1 < -1 ⇔ m < -2 : (d) cắt (C) tại 1 điểm, (1) có 1 nghiệm.

m + 1 = -1 ⇔ m = -2 : (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, (1) có 2 nghiệm.

-1 < m + 1 < 3 ⇔ -2 < m < 2 : (d) cắt (C) tại 3 điểm, (1) có 3 nghiệm.

m + 1 = 3 ⇔ m = 2 : (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, (1) có 2 nghiệm.

m + 1 > 3 ⇔ m > 2 : (d) cắt (C) tại 1 điểm, (1) có 1 nghiệm.

qwerty
31 tháng 3 2017 lúc 10:27

a) Xét hàm số y = -x3 + 3x + 1. Tập xác định : R.

y' = -3x2 + 3 = -3(x2 - 1); y' = 0 ⇔ x = -1,x = 1.

Bảng biến thiên:

Đồ thị (C) như hình bên.

b) x3 - 3x + m = 0 ⇔ -x3 + 3x + 1 = m + 1 (1). Số nghiệm của (1) chính là số giao điểm của đồ thị (C) với đường thẳng (d) : y = m + 1.

Từ đồ thị ta thấy :

m + 1 < -1 ⇔ m < -2 : (d) cắt (C) tại 1 điểm, (1) có 1 nghiệm.

m + 1 = -1 ⇔ m = -2 : (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, (1) có 2 nghiệm.

-1 < m + 1 < 3 ⇔ -2 < m < 2 : (d) cắt (C) tại 3 điểm, (1) có 3 nghiệm.

m + 1 = 3 ⇔ m = 2 : (d) cắt (C) tại 1 điểm và tiếp xúc với (C) tại 1 điểm, (1) có 2 nghiệm.

m + 1 > 3 ⇔ m > 2 : (d) cắt (C) tại 1 điểm, (1) có 1 nghiệm.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Hải Vân
Xem chi tiết
An Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Ngọc Nhả Uyên
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết