a) ta có : \(\left(a+b\right)^2=a^2+2ab+b^2=a^2-2ab+b^2+4ab\)
\(=\left(a-b\right)^2+4ab\left(đpcm\right)\)
b) ta có : \(a+b=9\Rightarrow\left(a+b\right)^2=9^2=81\)
\(\Leftrightarrow a^2+2ab+b^2=81\Leftrightarrow a^2-2ab+b^2+4ab=81\)
\(\Leftrightarrow\left(a-b\right)^2+4ab=81\) ............................................(1)
thay \(ab=20\) vào (1)
ta có (1) \(\Leftrightarrow\left(a-b\right)^2+4\left(20\right)=81\)
\(\Leftrightarrow\left(a-b\right)^2+80=81\Leftrightarrow\left(a-b\right)^2=81-80=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=1\\a-b=-1\end{matrix}\right.\)
th1: \(a-b=1\Rightarrow\left(a-b\right)^{2015}=\left(1\right)^{2015}=1\)
th2: \(a-b=-1\Rightarrow\left(a-b\right)^{2015}=\left(-1\right)^{2015}=-1\)
vậy \(\left(a-b\right)^{2005}=\pm1\)