a. Cho tích 800 số tự nhiên từ 1 đến 800 là A= 1.2.3.4.5...800. Khi phân tích A ra thừa số nguyên tố thì A chứa thừa số nguyên tố 3. Tìm số mũ của 3.
b. Cho \(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\) (với \(a,b,c,d\ne0;b\ne\pm d\). Chứng minh \(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)
b. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{2a}{2b}=\dfrac{2c}{2d}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{\left(bk\right)^{2017}-\left(dk\right)^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-k^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\left(1\right)\)
Mà \(k=\dfrac{a}{b}\Rightarrow k^{2017}=\left(\dfrac{a}{b}\right)^{2017}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c+a-c}{b+d+b-d}=\dfrac{2a}{2b}=\dfrac{a}{b}\left(1\right)\)
\(\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}=\dfrac{a+c-a+c}{b+d-b+d}=\dfrac{2c}{2d}=\dfrac{c}{d}\left(2\right)\)
Từ (1) và (2) ta có:
\(\dfrac{a}{b}=\dfrac{c}{d}\)
Đặt:
\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\dfrac{b^{2017}k^{2017}-d^{2017}k^{2017}}{b^{2017}-d^{2017}}=\dfrac{k^{2017}\left(b^{2017}-d^{2017}\right)}{b^{2017}-d^{2017}}=k^{2017}\)\(\left(\dfrac{a}{b}\right)^{2017}=\dfrac{a^{2017}}{b^{2017}}=\dfrac{b^{2017}k^{2017}}{b^{2017}}=k^{2017}\)
\(\Rightarrow\dfrac{a^{2017}-c^{2017}}{b^{2017}-d^{2017}}=\left(\dfrac{a}{b}\right)^{2017}\)