Giải các phương trình sau:
1. \(a,\dfrac{6}{x-1}-\dfrac{4}{x-3}=\dfrac{8}{2x-6}\)
\(b,\dfrac{1}{x-2}+\dfrac{5}{x+1}=\dfrac{3}{2-x}\)
\(c,\dfrac{3x}{x-2}-\dfrac{x}{x-5}=\dfrac{3x}{\left(x-2\right)\left(5-x\right)}\)
2. \(a,\left(x+2\right)\left(3-4x\right)=x^2+4x+4\)
\(b,2x^2-6x+1\)
a) Tìm min A biết \(A=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
b) Tìm min B biết \(B=\dfrac{x^2-4x+1}{x^2}\)
c) Tìm min C biết \(C=\dfrac{4x^2-6x+3}{\left(2x-1\right)^2}\)
d) Tìm max D biết \(D=\dfrac{x^2}{x^4+1}\)
Cho A=\(\dfrac{\left(x+2\right)^2}{x}.\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)
a) Rút gọn
b) Tìm Min A
1) Cho P = \(\left(\dfrac{4x-x^3}{1-4x^2}-x\right):\left(\dfrac{4x^2-x^4}{1-x^2}+1\right)\)
a) rút gọn b) tìm x để P > 0
2) Cho Q = \(\left(\dfrac{x}{x^2-3x+9}-\dfrac{11}{x^3+27}+\dfrac{1}{x+3}\right):\dfrac{x^2-1}{x+3}\)
a) rút gọn b) tìm GTLN
3) Cho A = \(\dfrac{1}{\left(x-y\right)^3}\left(\dfrac{1}{x^3}-\dfrac{1}{y^3}\right)+\dfrac{3}{\left(x-y\right)^4}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)+\dfrac{6}{\left(x-y\right)^5}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
chứng minh A là lập phương một số hữu tỉ
Cho biểu thức \(A=\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right)\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)
1. Rút gọn biểu thức A
2. Tìm giá trị nguyên cảu x để A nhận giá trị nguyên
1.Tìm min M=\(\dfrac{\left(x^2+x+1\right).a}{2}\). \(\dfrac{x^2+2x-7}{\left(x-2\right)^2}\)
2.Tìm min, max P= (\(^{ }x^2-x+1\)).m
B1: A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a) Rút gọn
b) Tìm x thuộc Z để A nguyên
c) Tính A với x=-2; x=-3
d) Tìm x dể A=1
B2: Phân tích thành nhân tử
a) x2-2xy-4+y2
b) x2-4x+3
c) 9x2(x-y)-x+y
B3: Rút gọn
a) (x-2)3-(x+2)3-(x-1)(x2+x+1)
b) (5x+3y)(5x-3y)+(4x-3y)2
B4: P(x)=x4+x3+mx2-3x+5
a) Khi m=4, thực hiện phép chia P(x) cho x2-x+1
b) Tìm m để P(x)⋮(x-1)
cho A=[\(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\)]:\(\dfrac{x^2+x}{x^3+x}\)
tìm giá trị của x để A>-1
Tìm các số A,B,C để có:
a)\(\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A}{\left(x-1\right)^3}+\dfrac{B}{\left(x-1\right)^2}+\dfrac{C}{x-1}\)
b)\(\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A}{x-1}+\dfrac{Bx+C}{x^2+1}\)