https://olm.vn/hoi-dap/question/125053.html
BN THAM KHỎA LINK NÀY NHÉ BÀI NÀY TƯƠNG TỰ NAK
https://olm.vn/hoi-dap/question/125053.html
BN THAM KHỎA LINK NÀY NHÉ BÀI NÀY TƯƠNG TỰ NAK
a.\(\dfrac{x+6}{5}-\dfrac{x-2}{3}< 2\)
b. \(\dfrac{x+5}{4}-\dfrac{x^{2^{ }}-3}{6}\ge1-\dfrac{2x^{2^{ }}-1}{12}\)
c. \(x^{2^{ }}-4x+3>0\)
d. \(x^{3^{ }}-2x^{2^{ }}+3x-2\ge0\)
e. \(\left|x+1\right|+\left|x-2\right|=4\)
f. \(\dfrac{5x-1}{10}+\dfrac{2x+3}{6}>\dfrac{x-8}{15}-\dfrac{x-1}{30}\)
h.\(\dfrac{10x+3}{12}< \dfrac{15-8x}{9}\)
tìm x:
\(-1\dfrac{1}{56};\left(\dfrac{1}{8}-\dfrac{1}{7}\right)-\dfrac{22}{2x-0,5}=-1\dfrac{1}{30}:\left(\dfrac{1}{5}-\dfrac{1}{6}\right)\)
Tính rồi so A và B :
\(A=\left(0,25\right)^{-1}.\left(1\dfrac{1}{4}\right)^2+25\left[\left(\dfrac{4}{3}\right)^{-2}:\left(1,25\right)^3\right]:\left(\dfrac{-2}{3}\right)^{-3}\)
\(B=\left(0,2\right)^{-3}.\left[\left(\dfrac{-1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}:\left(\dfrac{1}{8}\right)^{-1}-\left(2^{-3}\right)^{-2}:\dfrac{1}{2^6}\)
\(P=\left(\dfrac{x^2-1}{x^4-x^2+1}+\dfrac{2}{x^6+1}-\dfrac{1}{x^2+1}\right).\left(x^2-\dfrac{x^4+x^2-1}{x^4+x^2+1}\right)\)
a,Rút gọn b,Tìm GTLN
Tính
\(B=\dfrac{1}{x^2+x}+\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}\)
Giải phương trình?:
a) A=\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{3}{x\left(x^4+x^2+1\right)}\)
b) B=\(\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
Tính nhanh giá trị của các biểu thức sau:
a) \(A=85^2+75^2+65^2+55^2-45^2-35^2-25^2-15^2\)
b) \(B=1^2-2^2+3^2-4^2+5^2-6^2+...+2011^2-2012^2\)
c) \(C=\dfrac{1}{1975}\left(\dfrac{2}{1945}-1\right)-\dfrac{1}{1945}\left(1-\dfrac{2}{1975}\right)-\dfrac{1974}{1975}.\dfrac{1946}{1945}-\dfrac{3}{1975.1945}\)
d) \(D=\left(2^9+2^7+1\right)\left(2^{23}-2^{21}+2^{19}-2^{17}+2^{14}-2^{10}+2^9-2^7+1\right)\)
Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Chứng minh rằng: \(\dfrac{1}{a^{2n+1}}+\dfrac{1}{b^{2n+1}}+\dfrac{1}{c^{2n+1}}=\dfrac{1}{a^{2n+1}+b^{2n+1}+c^{2n+1}}=\dfrac{1}{\left(a+b+c\right)^{2n+1}}\)
Rút gọn \(\left[\dfrac{x}{2x-6}-\dfrac{x^2}{x^2-9}+\dfrac{x}{2x-9}.\left(\dfrac{3}{x}-\dfrac{1}{x-3}\right)\right]:\dfrac{x^2-5x-6}{18-2x^2}\)