a: \(A=\left(\dfrac{1}{3}+\dfrac{3}{x^2-3x}\right):\left(\dfrac{x^2}{27-3x^2}+\dfrac{1}{x+3}\right)\)
\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}:\left(\dfrac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\dfrac{3x-9}{3\left(x-3\right)\left(x+3\right)}\right)\)
\(=\dfrac{x^2-3x+9}{3x\left(x-3\right)}\cdot\dfrac{3\left(x-3\right)\left(x+3\right)}{-x^2+3x-9}\)
\(=\dfrac{-x-3}{x}\)
b: Để A<-1 thì A+1<0
\(\Leftrightarrow\dfrac{-x-3+x}{x}< 0\)
=>x<0
c: Để A là số nguyên thì \(x\in\left\{1;-1\right\}\)