9.1. Cho pt: x2 - 4x + 2 =0 có 2 nghiệm x1, x2. Hãy tính:
a) \(S=\frac{1}{x_1}+\frac{1}{x_2}\)
b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}\)
c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}\)
d) \(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}\)
9.3. Cho pt: x2 + 4x -1 =0 có 2 nghiệm x1, x2. Hãy tính:
a) A= |X1| + |X2|
b) B= x12(x12 - 7) + x22(x22 - 7).
9.4. Cho pt: x2 - 2x -1 =0 có 2 nghiệm x1, x2. Tính:
a) A = x14 + x24
b) B = x12(x12 - 2x22) + x22(x22 - 2x12)
Cảm ơn mọi người nhiều ạ!! Mọi người thấy bài của em thì xin mọi người giúp đỡ em bài tập ở trên với ạ!!
9.1 Để phương trình có hai nghiệm phân biệt thì :
\(\Delta'=2^2-2=2>0\)
Theo hệ thức Viei, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2\end{matrix}\right.\)
a) \(S=\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1.x_2}{x_1+x_2}=\frac{2}{4}=\frac{1}{2}\)
b) \(Q=\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=\frac{4^2-2.2}{2}=6\)
c) \(K=\frac{1}{x_1^3}+\frac{1}{x_2^3}=\frac{\left(x_1+x_2\right)(\left(x_1+x_2\right)^2-3xy)}{\left(x_1.x_2\right)^3}=5\)
\(G=\frac{x_1}{x_2^2}+\frac{x_2}{x_1^2}=\frac{\left(x_1+x_2\right)\left(\left(x_1+x_2\right)^2-3x_1x_2\right)}{\left(x_1x_2\right)^2}=10\)
9.3
\(pt:x^2+4x-1\)
\(\Delta=4^2-4.1.\left(-1\right)=20\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\\x_2=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\end{matrix}\right.\)
\(a.A=\left|x_1\right|+\left|x_2\right|=\left|-2+\sqrt{5}\right|+\left|-2-\sqrt{5}\right|=-2+\sqrt{5}+2+\sqrt{5}=2\sqrt{5}\)
b. Theo hệ thức Vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1.x_2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1^2+x^2_2=16-2x_1x_2=16-2.1=14\\x_1^2x_2^2=1\end{matrix}\right.\)
\(B=x_1^2\left(x_1^2-7\right)+x_2^2\left(x_2^2-7\right)=x_1^4-7x_1^2+x_2^4-7x^2_2=\left(x_1^2\right)^2+\left(x_2^2\right)^2-7\left(x^2_1+x^2_2\right)=\left(x^2_1+x^2_2\right)^2-2x_1^2x_2^2-7\left(x_1^2+x_2^2\right)=14^2-2.1-7.14=96\)