\(2018=2^x+2^y\ge2\sqrt{2^x.2^y}=2.2^{\frac{x+y}{2}}\)
\(\Rightarrow2^{\frac{x+y}{2}}\le1009\Rightarrow\frac{x+y}{2}\le log_21009\)
\(\Rightarrow x+y\le2.log_21009\)
\(2018=2^x+2^y\ge2\sqrt{2^x.2^y}=2.2^{\frac{x+y}{2}}\)
\(\Rightarrow2^{\frac{x+y}{2}}\le1009\Rightarrow\frac{x+y}{2}\le log_21009\)
\(\Rightarrow x+y\le2.log_21009\)
Cho a,b là các số nguyên dương thỏa mãn: log2(log2a(log2b21000)) = 0. Tính giá trị lớn nhất của ab
Cho hai số thực x, y thay đổi thõa mãn \(log_{\sqrt{3}}\dfrac{x+y}{x^2+y^2+xy+2}=x\left(x-3\right)+y\left(y-3\right)+xy\)
Tìm giá trị nhỏ nhất của biểu thức \(P=\dfrac{x+2y+3}{x+y+6}\)
cho x,y là số thực dương thỏa mãn lnx+lny≥ ln(x2+y).Tìm giá trị nhỏ nhất của P=x+y
A.P=6 B.P=2\(\sqrt{2}\) +3 C.P=2+3\(\sqrt{2}\) D.P=\(\sqrt{17} +\sqrt{3}\)
cho các số thực dương a, b, x, y thỏa mãn a>1, b>1 và \(a^{x^2}=b^{y^2}=\left(ab\right)^2\). Giá trị nhỏ nhất của biểu thức P=8x+y là \(m+n\sqrt{p},m,n,p\in N,p\le15\), giá trị của m+n+p thuộc khoảng:
A. (7;9) B. [10;13) C. [18;21) D. [14;16)
Có bao nhiêu số nguyên y sao cho tồn tại x∈ (\(\dfrac{1}{2}\) ;8) thỏa mãn 92\(x^2\)+xy= (1+xy).915x
Với các số thực dương xyz đôi một khác nhau thỏa xyz=1 và x,y,z khác 1 tìm minP=logx\(\dfrac{y}{z}\)+logy\(\dfrac{z}{x}\)+logz\(\dfrac{x}{y}\)+2(log\(\dfrac{y}{z}\)(x)+log\(\dfrac{z}{x}\)(y)+log\(\dfrac{x}{y}\)(z))
cho hai số thực a,b thỏa mãn 0<a<b<1 và biểu thức P=\(\log_{\frac{a}{b}}\sqrt{a}-4\log_a\left(a+\frac{b}{4}\right)\)đạt giá trị nhỏ nhất . Tính S=a+b
4. Tính đạo hàm của các hàm số sau:
a) \(y = (3x^2-4x+1)^{-4}\)
b) \(y = 3^{x^2-1} + e^{-x+1}\)
c) \(y = \ln (x^2-4x) + \log_{3} (2x-1)\)
d) \(y =x . \ln x + 2^{\frac{x-1}{x+1}}\)
e) \(y = x^{-7} - \ln (x^2-1)\)
Gọi m0 là giá trị nhỏ nhất để bất phương trình:
\(1+\log_2\left(2-x\right)-2\log_2\left(m-\frac{x}{2}+4\left(\sqrt{2-x}+\sqrt{2x+2}\right)\right)\le-\log_2\left(x+1\right)\) có nghiệm. m0 thuộc khoảng nào sau đây:
A. (-9;-8) B. (9;10) C. (-10;-9) D. (8;9)