a/ \(\left|0,2x-3,1\right|=6,3\)
\(\Leftrightarrow\left[{}\begin{matrix}0,2x-3,1=6,3\\0,2x-3,1=-6,3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0,2x=9,4\\0,2x=-3,2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=47\\x=-16\end{matrix}\right.\)
Vậy ...
b/ \(\left|12,1x+1,1.01\right|=12,1\)
\(\Leftrightarrow\left|12,1x+0,11\right|=12,1\)
\(\Leftrightarrow\left[{}\begin{matrix}12,1x+0,11=12,1\\12,1x+0,11=-12,1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}12,1x=11,99\\12,1x=-12,21\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{11,99}{12,1}\\x=\dfrac{-12,21}{12,1}\end{matrix}\right.\)