Ta có:
3(x−1) = 2(x−2)
=> 3x - 3 = 2x - 4
=> 3x - 2x = 3 - 4
=> x = -1
Vậy x = -1.
Ta có:
3(x−1) = 2(x−2)
=> 3x - 3 = 2x - 4
=> 3x - 2x = 3 - 4
=> x = -1
Vậy x = -1.
Bài 4.1: Tìm x, biết
a) \(4\left|3x-1\right|+\left|x\right|-2\left|x-5\right|+7\left|x-3\right|=12\)
b) \(3\left|x+4\right|-\left|2x+1\right|-5\left|x+3\right|+\left|x-9\right|=5\)
c) \(\left|2\frac{1}{5}-x\right|+\left|x-\frac{1}{5}\right|+8\frac{1}{5}=1,2\)
d) \(2\left|x+3\frac{1}{2}\right|+\left|x\right|-3\frac{1}{2}=\left|2\frac{1}{5}-x\right|\)
Tìm x, biết:
a) \(\left(5x+1\right)^2=\dfrac{36}{49}\)
b) \(\left[\left(-0,5\right)^3\right]^x=\dfrac{1}{64}\)
c) \(2020^{\left(x-2\right).\left(2x+3\right)}=1\)
d) \(\left(x+1\right)^{x+10}=\left(x+1\right)^{x+4}\) với \(x\in Z\)
e) \(\dfrac{3}{4}\sqrt{x}-\dfrac{1}{2}=\dfrac{1}{3}\)
Tìm x:
\(\left(x-2\right)^2-3\left(x+1\right)^2=2-\left(x-2\right)\left(x-1\right)\)
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+\left|x=\frac{1}{20}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
2. Tìm x, y, z biết\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
3.Tìm x\(a,2009-\left|x-2009\right|=x\)
\(b,\left|3x+2\right|=\left|5x-3\right|\)
a) \(\left(x-2\right)\left(x+1\right)< 0\)
b) \(\left(x+\dfrac{1}{3}\right)\left(x-1\right)\)> hoặc = 0
Tìm giá trị nhỏ nhất của biểu thức :
a) A=\(\left|x+2\right|+\left|2x-3\right|+\left|x-5\right|\)
b) B=\(\left|x+2\right|+\left|3x-1\right|+\left|x-7\right|+5\)
c) C=\(\left|x+1\right|+4\left|2x-7\right|+\left|x-5\right|\)
d) D=\(\left|x+4\right|+5\left|x+1\right|+\left|x-2\right|+5\)
tìm x biết \(\left(x^2-1\right)\left(x^2-3\right)\left(x^2-5\right)\left(x^2-7\right)\le0\)
Bài 1 : Tìm x biết :
a) \(3\left|x-1\right|+3\left|3x-5\right|=2\) b)\(\left|x+2\right|+\left|2x-1\right|+\left|5x-15\right|=10\)
Bài 2 :
a)\(\left|6x-9\right|+\left|9x-33\right|=13\) b)\(\left|x+1\right|+\left|3x-2\right|+\left|6x-24\right|=15\)
Tìm x:
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
1, Chứng minh các đẳng thức :
a, \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x+y\right)^2\left(x-y\right)^2\)
b, \(\left(x+y\right)^3=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
2, CMR : \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)