A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
=\(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
=\(2+\sqrt{2}+2-\sqrt{2}=4\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
A=\(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
=\(\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
=\(2+\sqrt{2}+2-\sqrt{2}=4\)
Tìm giá trị biểu thức của M=x3-6x với \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)
14. √(7-4√3)
15. √(8+2√15)
16. √(10-2√21)
17. √(11+2√18)
18. √(7+2√10)
19. √(7+4√3)
20. √(12-2√35)
Rút gọn biểu thức
a) \(\dfrac{\sqrt{14-6\sqrt{5}}}{\sqrt{5}-3}\)
b)\(\dfrac{\sqrt{3+\sqrt{5}}}{\sqrt{2}}\)
c)\(\dfrac{2+\sqrt{2}}{\sqrt{1,5+\sqrt{2}}}\)
d) \(\dfrac{\sqrt{20}}{\sqrt{5}}+\dfrac{\sqrt{117}}{\sqrt{13}}+\dfrac{\sqrt{272}}{\sqrt{17}}+\dfrac{\sqrt{105}}{\sqrt{2\dfrac{1}{7}}}\)
e)\(\dfrac{x\sqrt{x}-y\sqrt{y}}{x+\sqrt{xy}+y},x,y>0\)
f)\(\dfrac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
g)\(\sqrt{\dfrac{2+a-2\sqrt{2a}}{a+3-2\sqrt{3a}}}v\text{ới}a>0,a\ne3\)
cho a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=a+2b+3c=14\) . tính gt của biểu thức T = abc.
chứng minh rằng : (14√14+√12+√30√2+√5).√5−√21=4
Thực hiện các phép tính (không được ghi mỗi kết quả không, phải giải chi tiết)
A = \(2\sqrt{10}.3\sqrt{8}.2\)
B = \(\sqrt{20}\left(2\sqrt{3}-\sqrt{5}\right)\)
C = \(\left(2\sqrt{5}-3\right)\left(2\sqrt{5}+3\right)\)
Tính:
\(\sqrt{54-14\sqrt{5}}-\sqrt{14+6\sqrt{5}}\)
a, A= √8-2√15 -√8+2√15
b, B= √49+20√6 + √49-20√6
c, = √√5-√3-√29-12√5
d, √ x+2√x-1
a) 2sqrt(25(x - 3)) - 1/2 * sqrt(4x - 12) + 1/7 * sqrt(49(x - 3)) = 20 b) sqrt(x ^ 2 - 6x + 9) = 2