Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Quỳnh Phan

(3+1)(3\(^2\) + 1)(3\(^4\) + 1)(3\(^8\) + 1)(3\(^{16}\) + 1)(3\(^{32}\) + 1)

 Mashiro Shiina
18 tháng 11 2017 lúc 21:22

\(a=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(a=\dfrac{\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(a=\dfrac{\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(a=\dfrac{\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(a=\dfrac{\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)}{2}\)

\(a=\dfrac{\left(3^{32}-1\right)\left(3^{32}+1\right)}{2}\)

\(a=\dfrac{3^{64}-1}{2}\)

Giang
18 tháng 11 2017 lúc 21:22

Giải:

Đặt:

\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(\Leftrightarrow2A=3^{64}-1\)

\(\Leftrightarrow A=\dfrac{3^{64}-1}{2}\)

Vậy \(A=\dfrac{3^{64}-1}{2}\).


Các câu hỏi tương tự
do huynh ngoc tram
Xem chi tiết
Phạm Ngọc Nam
Xem chi tiết
Mai Xuân Phong
Xem chi tiết
Mai Huy Long
Xem chi tiết
An Ton
Xem chi tiết
nguyenphuongnguyen
Xem chi tiết
Nguyễn Anh Thư
Xem chi tiết
Duong Thi Nhuong
Xem chi tiết