chứng minh tổng cặp số nguyên tố sinh đôi khác (3;5) luôn là bội của 12
chứng minh rằng mọi số hữu tỉ dương đều có thể biểu diễn dưới dạng \(\dfrac{a^3+b^3}{c^3+d^3}\) với a, b, c d nguyên
Cho a,b,c là các số nguyên khác nhau đôi một. CMR biểu thức sau có giá trị là 1 số nguyên: \(P=\dfrac{a^3}{\left(a-b\right).\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right).\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right).\left(c-b\right)}\)
Trên 1 đương tròn người ta viết 2017 số nguyên dương thỏa mãn : Với hai số a và b cạnh nhau (a>b)thì a-b=1 hoặc a-b=2 hoặc a=2b . CMR trong 2017 số được viết luôn tồn tại số chia hết cho 3.
Chứng minh rằng: Nếu 3 số thực a, b, c thỏa mãn: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\) thì trong 3 số đó luôn tồn tại 2 số đối nhau
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
Chứng minh rằng với mọi số nguyên a , tổng \(\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2+...+\left(a+99\right)^2\) không thể viết được thành dạng lũy thừa lớn hơn 1 của một số nguyên dương
Cho 5 số nguyên dương đôi 1 khác nhau sao cho mỗi số không có uwcs sô nguyên tố nào khác 2 và 3.Chứng minh rằng trong 5 số đó tồn tại 2 số mà tích của chúng là 1 số chính phương