\(\left(2x-\sqrt{\dfrac{9}{4}}\right)^2=\dfrac{1}{\sqrt{625}}\)
\(\Leftrightarrow\left(2x-\dfrac{3}{2}\right)^2=\dfrac{1}{25}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{2}=\sqrt{\dfrac{1}{25}}\\2x-\dfrac{3}{2}=-\sqrt{\dfrac{1}{25}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{2}=\dfrac{1}{5}\\2x-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{17}{10}\\2x=\dfrac{13}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{20}\\x=\dfrac{13}{20}\end{matrix}\right.\)
Vậy ..
\(\left(2x-\sqrt{\dfrac{9}{4}}\right)^2=\dfrac{1}{\sqrt{625}}\\ \Leftrightarrow\left(2x-\dfrac{3}{2}\right)^2=\dfrac{1}{25}\\ \Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{3}{2}=\dfrac{1}{5}\\2x-\dfrac{3}{2}=-\dfrac{1}{5}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{20}\\x=\dfrac{13}{20}\end{matrix}\right.\)
(2x -√\(\dfrac{9}{4}\))2=\(\dfrac{1}{\sqrt{625}}\)
(2x- \(\dfrac{3}{2}\))2 = \(\dfrac{1}{25}\)
2x2- (\(\dfrac{3}{2}\))2 = \(\dfrac{1}{25}\)
2x2 = \(\dfrac{1}{25}\)-(\(\dfrac{3}{2}\))2
2x2 = \(\dfrac{-221}{100}\)
x2 = \(\dfrac{-221}{200}\)
x = √\(\dfrac{-221}{200}\)