`=> 2x^2 - 2x - x^2 - 2x + 4 = 0`
`=> x^2 - 4x + 4 = 0`
`=> (x-2)^2 = 0`
`=> x - 2 = 0`
`=> x = 2.`
Vậy `x = 2`
2(x ^ 2 - x) - x(x + 2) + 4 = 0
<=> 2x^2 -2x -x^2-2x+4=0
<=> x^2 -4x + 4= 0
<=> (x-2)^2=0
<=> x-2=0
<=> x= 2
`2(x^2-x)-x(x+2)+4=0`
`<=>2x^2-2x-x^2-2x+4=0`
`<=>x^2-4x+4=0`
`<=>(x-2)^2=0`
`<=>x-2=0`
`<=>x=2`
Vậy `S={2}`
\(\Leftrightarrow2x^2-2x-x^2-2x+4=0\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Rightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x = 2
2 (x2 - x) - x(x + 2) + 4 = 0
=> 2x2 - 2x - x2 - 2x + 4 = 0
=> x2 - 4x + 4 = 0
=> (x - 2)2 = 0
=> x - 2 = 0
=> x = 2
vậy x = 2