$2(x-1)-x>3(x-1)-2x-5 \Leftrightarrow 2x-2-x>3x -3-2x-5$
$\Leftrightarrow 0x>-6; \forall x \in \mathbb{R}$ nên phương trình vô số nghiệm
2(x-1)-x>3(x-1)-2x-5
=>2x-2-x>3x-3-2x-5
=>2x-x-3x+2x>-5-3+2
=>0x>-6
=> vô no
$2(x-1)-x>3(x-1)-2x-5 \Leftrightarrow 2x-2-x>3x -3-2x-5$
$\Leftrightarrow 0x>-6; \forall x \in \mathbb{R}$ nên phương trình vô số nghiệm
2(x-1)-x>3(x-1)-2x-5
=>2x-2-x>3x-3-2x-5
=>2x-x-3x+2x>-5-3+2
=>0x>-6
=> vô no
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
giải pt
a) \(3\sqrt{x}+\frac{3}{2\sqrt{x}}=2x+\frac{1}{2x}-7\)
b) \(5\sqrt{x}+\frac{5}{2\sqrt{x}}=2x+\frac{1}{2x}+4\)
c) \(\sqrt{2x^2+8x+5}+\sqrt{2x^2-4x+5}=6\sqrt{x}\)
d) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
e) \(x^2+2x\sqrt{x-\frac{1}{x}}=3x+1\)
f) \(x^2-6x+x\sqrt{\frac{x^2-6}{x}}-6=0\)
g) \(\frac{3x^2}{3+\sqrt{x}}+6+2\sqrt{x}=5x\)
h) \(\frac{x^2}{4-3\sqrt{x}}+8=3\left(x+2\sqrt{x}\right)\)
1. \(x^3-x^2+12x\sqrt{x-1}+20=0\)
2. \(x^3+\sqrt{\left(x-1\right)^3}=9x+8\)
3. \(\sqrt{2x^2+x+1}+\sqrt{x^2-x+1}=3x\)
4. \(x^6+\left(x^3-3\right)^3=3x^5-9x^2-1\)
5. \(x^2-6\left(x+3\right)\sqrt{x+1}+14x+3\sqrt{x+1}+13=0\)
6. \(x^2-4x+\left(x-3\right)\sqrt{x^2-x+1}=-1\)
7. \(\sqrt{2x-1}+\sqrt{5-x}=x-2+2\sqrt{-2x^2+11x-5}\)
8. \(\sqrt{5x+11}-\sqrt{6-x}+5x^2-14x-60=0\)
9. \(x^2+6x+8=3\sqrt{x+2}\)
10. \(2x^2+3x-2=\left(2x-1\right)\sqrt{2x^2+x-3}\)
11. \(\sqrt{x+1}+\sqrt{4-x}-\sqrt{\left(x+1\right)\left(4-x\right)}=1\)
12. \(x^2-\sqrt{x^2-4x}=4\left(x+3\right)\)
13. \(x^2-x-4=2\sqrt{x-1}\left(1-x\right)\)
14. \(\frac{1}{\sqrt{x}+1}+\frac{1}{\sqrt{x}-1}=1\)
15. \(\sqrt{2x^2+3x+2}+\sqrt{4x^2+6x+21}=11\)
16. \(\sqrt{x+3+3\sqrt{2x-3}}+\sqrt{x-1+\sqrt{2x-1}}=2\sqrt{2}\)
17. \(\left(x-2\right)^2\left(x-1\right)\left(x-3\right)=12\)
18. \(2x^2+\sqrt{x^2-2x-19}=4x+74\)
19. \(x^4+x^2-20=0\)
20. \(x+\sqrt{4-x^2}=2+3x\sqrt{4-x^2}\)
21. \(\left(x^2+x+1\right)\left(\sqrt[3]{\left(3x-2\right)^2}+\sqrt[3]{3x-2}+1\right)=9\)
22. \(\sqrt{x^2-3x+5}+x^2=3x+7\)
23. \(x^2+6x+5=\sqrt{x+7}\)
24. \(\frac{2x^2-3x+10}{x+2}=3\sqrt{\frac{x^2-2x+4}{x+2}}\)
25. \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\)
26. \(2\left(x^2+2\right)=5\sqrt{x^3+1}\)
27. \(\sqrt{x-1}+\sqrt{5-x}-2=2\sqrt{\left(x-1\right)\left(5-x\right)}\)
28. \(x^2+\frac{9x^2}{\left(x-3\right)^2}=40\)
29. \(\frac{26x+5}{\sqrt{x^2+30}}+2\sqrt{26x+5}=3\sqrt{x^2+30}\)
30. \(\frac{\sqrt{27+x^2+x}}{2+\sqrt{5-\left(x^2+x\right)}}=\frac{\sqrt{27+2x}}{2+\sqrt{5-2x}}\)
1)2x(25x-4)-(5x-2)(5x+1)=8 / 5)\(2\left(x-2\right)-3\left(3x-1\right)=\left(x-3\right)\)
2)x(4x-3)-(2x-2)(2x-1)=5 / 6)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
3)\(\frac{5}{2x+3}+\frac{3}{9-x^2}=\frac{8}{7\left(x=3\right)}\) / 7)\(\frac{5x-2}{6}+\frac{3-4x}{2}=2-\frac{x+7}{3}\)
4)\(\frac{2}{3\left(x-2\right)}+\frac{5}{12-3x^2}=\frac{3}{4\left(x+2\right)}\) / 8)\(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Giải bất phương trình
A/ |2x-1|<3x+5 b/ x+1/2x+1<x-3/2x-3 c/ 2/x+1/x-2>0
giải dùm mình với ạ <3
1. \(\sqrt{x+2}+x^2-x-2\le\sqrt{3x-2}\)
2. \(\sqrt{2x+1}+\sqrt[4]{2x-1}< \sqrt{x-1}+\sqrt{x^2-2x+3}\)
3. \(\sqrt[3]{3-2x}+\frac{5}{\sqrt{2x-1}}-2x\le6\)
4. \(\left(x+3\right)\sqrt{x+1}+\left(x-3\right)\sqrt{1-x}+2x=0\)
Giải các phương trình sau:
a)\(\left|x^2-3x-5\right|+2\left|2x-1\right|=x^2-4\)
b)\(\frac{4}{2x+1}+\frac{3}{2x+2}=\frac{2}{2x+3}+\frac{1}{2x+4}\)
c)\(\frac{2x-5}{2x^2+3x-5}+\frac{3x+1}{1-x}=\frac{x+20}{4x+10}\)
d)\(\frac{1}{x^2+5x+4}+\frac{1}{x^2+11x+28}+\frac{1}{x^2+17x+70}=\frac{3}{4x-2}\)
1. Giải các phương trình sau:
a)\(\sqrt[4]{x-\sqrt{x^2-1}}+\sqrt[]{x+\sqrt{x^2-1}}=2\)
b)\(x^2-x-\sqrt{x^2-x+13}=7\)
c)\(x^2+2\sqrt{x^2-3x+1}=3x+4\)
d)\(2x^2+5\sqrt{x^2+3x+5}=23-6x\)
e)\(\sqrt{x^2+2x}=-2x^2-4x+3\)
f)\(\sqrt{\left(x+1\right)\left(x+2\right)}=x^2+3x+4\)
2. Giải các bất phương trình sau:
1)\(\sqrt{x^2-4x+5}\ge2x^2-8x\)
2)\(2x^2+4x+3\sqrt{3-2x-x^2}>1\)
3)\(\dfrac{\sqrt{-3x+16x-5}}{x-1}\le2\)
4)\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}\ge2\sqrt{x^2-5x+4}\)
5)\(\dfrac{9x^2-4}{\sqrt{5x^2-1}}\le3x+2\)
\(\sqrt{3x-5}+\sqrt{2x+3}=\sqrt{x+2}\)
x2 + 2x + 6 = 3\(\sqrt{x^2+2x+2}\)
(x+1)\(\sqrt{x^2-2x+3}=x^2\)+1
Giải các phương trình sau:
a)\(\frac{2x-5}{2x^2+3x-5}+\frac{3x+1}{1-x}=\frac{x+20}{4x+10}\)
b)\(\sqrt{5x+1}=\sqrt{14x+7}+\sqrt{2x+3}\)
c)\(\sqrt{x+3}-\sqrt{x+1}=\sqrt{5x+7}\)
d)\(\sqrt{\left(x-3\right)^2\left(x-1\right)}=x-3\)
e)\(\sqrt{x^2+2x+2}=1-x\)
f)\(\sqrt{x^4+x^2+4}=x^2+2\)
g)\(2x^2-6x+1=\sqrt{4x+5}\)
h)\(x^2+\sqrt{x+11}=11\)