\(2\left(\frac{\sqrt{3}}{2}cosx-\frac{1}{2}sinx\right)+3\left(\frac{1}{2}cosx-\frac{\sqrt{3}}{2}sinx\right)=2\)
\(\Leftrightarrow\frac{2\sqrt{3}+3}{2}cosx-\frac{2+3\sqrt{3}}{2}sinx=2\)
\(\Leftrightarrow\frac{2\sqrt{3}+3}{2\sqrt{13+6\sqrt{3}}}cosx-\frac{2+3\sqrt{3}}{2\sqrt{13+6\sqrt{3}}}sinx=\frac{2}{\sqrt{13+6\sqrt{3}}}\)
Đặt \(\frac{2\sqrt{3}+3}{2\sqrt{13+6\sqrt{3}}}=cosa\)
\(\Rightarrow cosx.cosa-sinx.sina=\frac{2}{\sqrt{13+6\sqrt{3}}}\)
\(\Leftrightarrow cos\left(x-a\right)=\frac{2}{\sqrt{13+6\sqrt{3}}}\)
\(\Leftrightarrow x=a\pm arccos\left(\frac{2}{\sqrt{13+6\sqrt{3}}}\right)+k2\pi\)