(2,5 điểm) Cho triangle ABC vuông tại A, đường cao AH, đường trung tuyến. AM 1 ) Biết BC = 10 cm, BH = 3.6cm Tỉnh độ dài đoạn thẳng AB, AH và số đo góc HAM ( làm ròn số đo góc đến phút) b) từ B kẻ BE vuông góc AM (E thuộc AM ) BE cắt cắt AH tại D. Chứng minh rằng DM II AC HD = DM * sin C Lấy điểm K trên cạnh BE sao cho hat AKM = 90 deg Chứng minh AE. ME = BE .DE VÀ S² AMK =S² AMB. S AMD
1: Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC
=>AB=căn 3,6*10=6(cm)
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>HB^2=6^2-3,6^2=4,8^2
=>HB=4,8(cm)
b: Xét ΔMAB có
BE,AH là đường cao
BE cắt AH tại D
=>D là trực tâm
=>MD vuông góc AB
=>MD//AC
=>góc HMD=góc HCA
ΔHDM vuông tại H
=>HD=DM*sinDMH
=DM*sinC