Ta có:
\(21^{20}-11^{10}=...1-...1=...0\) ( vì các số có tận cùng bằng 1 khi nhân lên lũy thừa vẫn có tận cùng bằng 1 )
Mà số có tận cùng bằng 0 thì chia hết cho cả 2 và 5
\(\Rightarrow21^{20}-11^{10}⋮2\) và 5 ( đpcm )
Do (2;5)=1 nên ta phải chứng minh 2120 - 1110 chia hết cho 10
Ta có:
\(21\equiv1\left(mod10\right)\)
\(\Rightarrow21^{20}\equiv1\left(mod10\right)\) (1)
\(11\equiv1\left(mod10\right)\)
\(\Rightarrow11^{10}\equiv1\left(mod10\right)\) (2)
Từ (1) và (2) \(\Rightarrow21^{20}\equiv11^{10}\left(mod10\right)\)
\(\Rightarrow21^{20}-11^{10}⋮10\left(đpcm\right)\)