ý tưởng : nhóm với ad |a|+|b|>=|a+b| sao cho VT>= VP
ý tưởng : nhóm với ad |a|+|b|>=|a+b| sao cho VT>= VP
Giải phương trình
a) \(2x\left(x+5\right)=\left(x+3\right)^2+\left(x-1\right)^2+20\)
b) \(\left(2x-2\right)^3=\left(x+1\right)^2+3\left(x-2\right)\left(x+5\right)\)
c) \(\left(x-1\right)^2+\left(x+3\right)^2=2\left(x-2\right)\left(x+1\right)+38\)
d) \(\left(x+2\right)^3-\left(x-2\right)^3=12x\left(x-2\right)-8\)
Giải phương trình:
\(\left(\dfrac{7x-x^2}{x+1}\right)\left(\dfrac{7+x^2}{x+1}\right)=10\)
Giải phương trình:
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
Giải phương trình:
a, \(\left(x+1+\dfrac{1}{x}\right)^2=\left(x-1-\dfrac{1}{x}\right)^2\)
b, \(\left(x-1\right)^2+3x^2=0\)
\(\dfrac{\left(x+1\right)\left(x+2\right)-\left[\left(x+1\right)-x\right]}{\left(x+2\right)\left[\left(x+1\right)^2-x\right]}-\dfrac{\left(x+1\right)+2-\left(x+1\right)\left[\left(x+1\right)^3+1\right]}{\left(x+1\right)^3+1}\)
Giải phương trình :
a)\(x.\left(x+1\right).\left(x+2\right).\left(x+3\right)=24\)
b)\(2x^4-20x^2+18=0\)
c)\(\left(x^2-x+1\right)^2-5x\left(x^2-x+1\right)+4x^2=0\)
Giải các phương trình sau:
a) \(x^3-6x^2-9x+14=0\)
b) \(\frac{\left(2010-x\right)^2-\left(2010-x\right)\left(x-2011\right)+\left(x-2011\right)^2}{\left(2010-x\right)^2+\left(2010+x\right)\left(x-2011\right)+\left(x-2011\right)^2}\)
Giải phương trình:
\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)
giải phương trình
a, \(\dfrac{3}{2x-1}+1=\dfrac{2x-1}{2x+1}\)
b,\(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)
c,\(\dfrac{5}{x^2+x-6}-\dfrac{2}{x^2+4x+3}=\dfrac{-3}{2x-1}\)
d, \(\left(x^2-4\right)\left(2x+3\right)=\left(x^2-4\right)\left(x-1\right)\)
e, \(x^3+x^2+x+1=0\)