Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=2x+m;\left(d_2\right):y=\left(m^2+1\right)x-1\) (Với m là tham số)
a) Tìm m để d1 cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho \(AB=2\sqrt{5}\)
b) Tìm tọa độ giao điểm C của d1 và d2 khi m=2
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng (d1): y = –mx + m + 1 và (d2): \(y=\frac{1}{m}x-1-\frac{5}{m}\)với m là tham số khác 0
a) Chứng minh rằng (d1) và (d2) luôn vuông góc với nhau với mọi giá trị tham số m khác 0
b) Tìm điểm cố định mà đường thẳng (d1) luôn đi qua. Chứng minh rằng giao điểm của hai đường thẳng luôn thuộc một đường cố định
Trên mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=\left(m^2+1\right)x-2\) và \(\left(d_2\right):y=\left(m+3\right)x-m-2\) (m là tham số). Tìm m để \(\left(d_1\right),\left(d_2\right)\) cắt nhau tại \(M\left(x_M;y_M\right)\) thỏa \(A=2020x_M\left(y_M+2\right)\) đạt giá trị nhỏ nhất.
Trong mặt phẳng Oxy , cho hai đường thẳng \(\left(d1\right):y=-mx+m+1\) và đường thẳng \(\left(d2\right):y=\frac{1}{m}x-1-\frac{5}{m}\) và m là một tham số khác 0 .
a) Chứng minh rằng (d1 ) và (d2 ) luôn vuông góc với nhau với mọi giá trị m ≠ 0
b) Tìm điểm cố định mà (d1 ) luôn luôn đi qua .Chứng minh giao điểm của hai đường thẳng luôn nằm trên
một đường cố định .
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.
Trong mặt phẳng tọa độ Oxy cho đường thẳng (d):y=(a-2)x+b đi qua điểm M(-2;-1) và song song với đường thẳng y=x+2. Tìm các số a và b
a) Tìm các giá trị của a và b để đường thẳng (d): y=ax+b đi qua hai điểm M(1;5) và N(2;8).
b) Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = 2x – a + 1 và parabol (P): y = \(\dfrac{1}{2}x^2\).
1.Tìm a để đường thẳng a đi qua điểm A (-1;3)
2.Tìm a để (d) cắt (P) tại hai điểm phân biệt có tọa độ (\(x_1;x_2\)) và (\(x_2;y_2\)) thỏa mãn điều kiện \(x_1x_2\left(y_1+y_2\right)+48=0\)
Cho \(\left(P\right):y=\dfrac{1}{2}x^2\) và đường thẳng \(\left(d\right):y=mx+m+5\)
a) Chứng minh rằng với mọi giá trị của tham số m thì
+ Đường thẳng (d) luôn đi qua một điểm cố định, tìm tọa độ điểm đó
+ Đường thẳng (d) luôn cắt (P) tại hai điểm phân biệt
b) Tìm tọa độ hai điểm A và B phụ thuộc (P) sao cho A đối xứng với B quá điểm M(-1;5)
(Làm hộ mình câu c nha)
Trong mặt phẳng tọa độ Oxy cho parabol (P): \(y=-x^2\) và đường thẳng (d) đi qua I(0;-1) và có hệ số góc k
a) CMR với mọi k thì đường thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt A;B
b) Gọi hoành độ của A; B lần lượt là x1;x2. CM: \(\left|x_1-x_2\right|\ge2\)
c) Chứng minh: Tam giác OAB vuông