ĐK : \(x\ne-2.-3;-4;-5;-6\)
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\Leftrightarrow\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\Leftrightarrow x^2+8x-20=0\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\Leftrightarrow x=2;x=-10\)( tmđkxđ )
Vậy tập nghiệm phương trình là S = { -10 ; 2 }
ĐKXĐ \(x\notin\left\{-2;-3;...;-6\right\}\)
Phương trình tương đương với:
\(\dfrac{1}{\left(x^2+2x\right)+\left(3x+6\right)}+\dfrac{1}{\left(x^2+3x\right)+\left(4x+12\right)}+\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+4\right)-\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}+\dfrac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\dfrac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\\\Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\\ \Leftrightarrow\begin{matrix}x=2\\x=-10\end{matrix}\left(t.m\right)\)
ĐKXĐ: \(x\notin\left\{-2;-3;-4;-5;-6\right\}\)
Ta có: \(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{8\left(x+6\right)}{8\left(x+2\right)\left(x+6\right)}-\dfrac{8\left(x+2\right)}{8\left(x+2\right)\left(x+6\right)}=\dfrac{\left(x+2\right)\left(x+6\right)}{8\left(x+2\right)\left(x+6\right)}\)
Suy ra: \(8x+48-8x-16=x^2+8x+12\)
\(\Leftrightarrow x^2+8x+12-32=0\)
\(\Leftrightarrow x^2+8x-20=0\)
\(\Leftrightarrow x^2+10x-2x-20=0\)
\(\Leftrightarrow x\left(x+10\right)-2\left(x+10\right)=0\)
\(\Leftrightarrow\left(x+10\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+10=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-10\left(nhận\right)\\x=2\left(nhận\right)\end{matrix}\right.\)
Vậy: S={-10;2}