1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
Chứng minh rằng \(\sqrt{ab}\) + \(\sqrt{cd}\) ≤ \(\sqrt{\left(a+c\right)\left(b+d\right)}\) với mọi a,b,c,d > 0
Bài 1: Cho a,b,c>0 thỏa mãn : a+b+c=3.
Chứng minh rằng: \(\dfrac{a^2}{a+b^2}\)+ \(\dfrac{b^2}{b+c^2}\)+ \(\dfrac{c^2}{c+a^2}\) ≥ \(\dfrac{3}{2}\)
Bài 2: Tìm giá trị lớn nhất của biểu thức với x ≥ 0 ; x ≤ \(\dfrac{4}{3}\)
A= 4x3 - 3x2
Bài 3: Cho a,b,c > 0. Chứng minh rằng:
3( ab + bc + ca ) ≤ ( a+ b + c )2
Chứng minh rằng với mọi a, b, c > 0 ta có: \(\frac{a^4}{1+a^2b}+\frac{b^4}{1+b^2c}+\frac{c^4}{1+c^2a}\ge\frac{abc\left(a+b+c\right)}{1+abc}\)
Chứng minh (1-a)(1-b)(1-c)\(\ge\)8abc. Với mọi a,b,c>0 và a+b+c=1
chứng minh a/bc+b/ca+c/ab >= 1/a+1/b+1/c với a,b,c >0
chứng minh (1-a)(1-b)(1-c)>=8abc với a,b,c>=0 và a+b+c=1
Cho a + b > 0, chứng minh rằng:
\(\dfrac{a+b}{2}\ge\sqrt[3]{\dfrac{a^3+b^3}{2}}\)
Cho a, b, c > 0 và abc = 1. Chứng minh rằng \(\dfrac{1}{a^2.\left(b+c\right)}+\dfrac{1}{b^2.\left(c+a\right)}+\dfrac{1}{c^2.\left(a+b\right)}\ge\dfrac{3}{2}\)