1/cho số a >0 tìm GTNN của P = 2a +\(\frac{4}{a}\)+\(\frac{16}{a+2}\)
2/ cho a,b,c là số thực ϵ [0;\(\frac{1}{4}\)) chứng minh:
\(\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
3/ cho các số dương a,b,c tỏa abc = 1. Chứng minh
\(\frac{1}{a^2c+b^2c+1}+\frac{1}{b^2a+c^2a+1}+\frac{1}{c^2b+a^2b+1}\le1\)
1. Cho a,b \(\ge\) 0. Chứng minh \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{4}{a+b}\left(1\right)\). Áp dụng chứng minh các BĐT sau
a. \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\left(a,b,c\ge0\right)\)
b. \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\)
Cho a,b,c > 0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}\)≥\(1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho a,b,c >0 . Chứng minh rằng : \(\frac{a}{b+2c}+\frac{b}{c+2a}+\frac{c}{a+2b}=1+\frac{b}{b+2a}+\frac{c}{c+2b}+\frac{a}{a+2c}\)
Cho \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=1\end{matrix}\right.\) . Chứng minh rằng \(a^2b+b^2c+c^2a\le\frac{4}{27}\)
cho các số a,b,c > 0. chứng minh:
1.\(\frac{a^2}{a+2b}+\frac{b^2}{b+2c}+\frac{c^2}{c+2a}\ge\frac{a+b+c}{3}\)
2.\(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
chứng minh các bất đẳng thức sau:
a) \(\frac{a^4}{b}+\frac{b^4}{c}+\frac{c^4}{a}\ge3abc,\left(\forall a,b,c>0\right)\)
b) \(\left(\frac{a+b+c+d}{4}\right)^4\ge abcd,\left(\forall a,b,c,d\ge0\right)\)
c) \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c},\left(\forall a,b,c>0\right)\)
d) \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6,\left(\forall a,b,c>0\right)\)
Cho a;b;c>0:abc=1.CMR:
\(\sqrt[3]{\frac{b+c}{2a}}+\sqrt[3]{\frac{c+a}{2b}}+\sqrt[3]{\frac{a+b}{2c}}\le\frac{5\left(a+b+c\right)+9}{8}\)
Cho a,b,c>0 Chứng minh \(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}\ge3+\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)