Áp dụng BĐT AM-GM ta có:
\(VT=\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
\(\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ac}\)
\(=8abc=VP\)
Khi \(a=b=c\)
BĐT\(\Leftrightarrow\)(a+b)+(b+c)+(c+a)\(\ge\)8abc
TA có BDT cô si
a+b\(\ge\)2\(\sqrt{ab}\)
\(\Rightarrow\)(a+b)(b+c)(a+c)\(\ge\)\(2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}\)
Vậy (1-a)(1-b)(1-c)\(\ge\)8abc