Cho phân số :\(A=\dfrac{3n-5}{2n+1}\left(n\in Z;n\ne\dfrac{-1}{2}\right)\)
a) Tìm n để A là phân số tối giản.
b) Tìm GTLN, GTNN của A.
bài 1 : Tìm x,y
a) \(\dfrac{15}{x}=\dfrac{y}{7}\) với x,y thuộc Z*
b) \(\dfrac{2}{x+4}=\dfrac{y-3}{6}\)
bài 2 : Cho n thuộc N. CMR : \(\dfrac{n+1}{2n+3}\) là phân số tối giản.
Bài 1 : Cho A = \(\dfrac{n+2}{n-5}\)(n \(\in\) Z, n \(\ne\) 5). Tìm n để A \(\in\) Z
Bài 2 : CMR các phân số sau tối giản:
a) \(\dfrac{n+1}{2n-3}\) ; b) \(\dfrac{2n+3}{4n+8}\) ; c) \(\dfrac{3n+2}{5n+3}\) ; d) \(\dfrac{n+1}{2n+3}\) ; e) \(\dfrac{2n+3}{2n+8}\)
Cho PS \(\dfrac{m}{n}=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\)
CRM TS chia hết cho 7
a) Cho hai phân số \(\dfrac{1}{n}\)và \(\dfrac{1}{n+1}\)(n\(\in\)Z,n>0). Chứng tỏ rằng tích của hai phân số này bằng hiệu của chúng.
b) Áp dụng kết quả trên để tính biểu thức sau :
A=\(\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{5}+\dfrac{1}{5}.\dfrac{1}{6}+\dfrac{1}{6}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{8}+\dfrac{1}{8}.\dfrac{1}{9}\)
B=\(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}+\dfrac{1}{110}\)
tính nhanh
2155-(174+2155)+(-68+174)
2.\(\dfrac{3}{7}\left(\dfrac{2}{9}-1\dfrac{3}{7}\right)-\dfrac{5}{3}:\dfrac{1}{9}\)
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)\left(1-\dfrac{1}{5}\right)\)
\(\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right).\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{24}\right)\)
chứng tỏ phân số sau tối giản vs mọi số tự nhiên n\(\dfrac{n+1}{2n+3}\)
Cho A= \(\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+...+\dfrac{11}{5^{12}}\) với n\(\in N\)
Chứng minh rằng a < \(\dfrac{1}{16}\)
a) Tìm tập hợp số nguyên x ; y sao cho :
\(\left(1\dfrac{3}{4}-\dfrac{6}{4}\right):\left(1\dfrac{1}{5}+2\dfrac{2}{5}+20\%\right)< x< 1\dfrac{1}{5}\cdot1\dfrac{3}{4}+3\dfrac{2}{11}:2\dfrac{3}{21}\)
1: \(\dfrac{\left(2^{12}\cdot3^5-4^6\cdot9^2\right)}{\left(2^2\cdot3\right)^6+8^4\cdot3^5}-\dfrac{\left(5^{10}\cdot7^3-25^5\cdot49^2\right)}{\left(125\cdot7\right)^3-5^9\cdot14^3}\)
2: Chứng Minh với \(\forall N\in Z\) thì B= \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)