1. Tính gt của bt:
\(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{24}+\sqrt{25}}\)
2. Tính tổng \(S=\sqrt{1+\left(1+\frac{1}{3}\right)^2}+\sqrt{1+\left(\frac{1}{2}+\frac{1}{4}\right)^2}+\sqrt{1+\left(\frac{1}{3}+\frac{1}{5}\right)^2}+...+\sqrt{1+\left(\frac{1}{2014}+\frac{1}{2016}\right)^2}\)
Tính
\(A=\frac{3}{\sqrt{3}}+\frac{2\sqrt{3}}{\sqrt{3}+1}\) \(B=\frac{\sqrt{15}-\sqrt{12}}{\sqrt{5}-2}-\frac{1}{2-\sqrt{3}}\)
\(C=\frac{5+2\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}}-\left(\sqrt{5}+\sqrt{3}\right)\)
\(D=\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\) \(E=\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}-\frac{2-\sqrt{2}}{\sqrt{2}-1}\)
3. a.\(\sqrt{\left(4-\sqrt{17}\right)^2}\)
b.\(\frac{2\sqrt{3}}{2}\)
c \(\frac{\sqrt{6}+\sqrt{14}}{\text{2√3+√28}}\)
d.\(\frac{x+1}{\sqrt{x^2-1}}\)
e.\(\frac{x^2-5}{x+\sqrt{5}}\)
f.\(\frac{2}{2-\sqrt{3}}\)
g.\(\frac{\sqrt{2}+1}{\sqrt{2}-1}\)
f.\(\frac{x\sqrt{x}-1}{\sqrt{x}-1}\)
i.\(\frac{3}{\sqrt{20}}+\frac{1}{\sqrt{60}}-2\sqrt{\frac{1}{15}}\)
k.\(\frac{3}{\sqrt{5}-\sqrt{2}}+\frac{4}{\sqrt{6}+\sqrt{2}}\)
i.(\(\frac{1}{\sqrt{5}-\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{3}}\))\(\sqrt{5}\)
h.\(\left(\sqrt{20}-\sqrt{45}+\sqrt{5}\right)\sqrt{5}\)
l.\(\left(5\sqrt{3}+3\sqrt{5}\right):\sqrt{15}\)
m.\(\frac{1}{3}\sqrt{48}+3\sqrt{75}-\sqrt{27}-10\sqrt{\frac{4}{3}}\)
n.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+\sqrt{5}}\right):2\sqrt{5}\)
d\(\left(2+\sqrt{5}\right)^2-\left(2+\sqrt{5}\right)^2\)
Thực hiện phép tính:
a) \(\left(\frac{1}{7-4\sqrt{3}}+\frac{3}{7+4\sqrt{3}}\right)\left(7+2\sqrt{3}\right)\)
b)\(\left(\frac{3\sqrt{5}-\sqrt{15}}{\sqrt{27}-3}+\frac{2\sqrt{5}}{\sqrt{3}}\right).4\sqrt{15}\)
c)\(\sqrt{5-2\sqrt{6-25-\sqrt{96}}}\)
d)\(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)
Chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \frac{3}{7}\)
tinh
a. \(\sqrt{5}-\sqrt{48}+5\sqrt{27}-\sqrt{45}\)
b.\(\left(\sqrt{5}+\sqrt{2}\right)\left(3\sqrt{2}-1\right)\)
c.\(3\sqrt{50}-2\sqrt{75}-4\frac{\sqrt{54}}{\sqrt{3}}-3\sqrt{\frac{1}{3}}\)
d.\(\sqrt{\left(\sqrt{3}-3\right)^2}+\sqrt{4-2\sqrt{3}}\)
e.\(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}-\frac{20}{\sqrt{10}}\)
f.\(\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}-\frac{\sqrt{5}+1}{\sqrt{5}-1}\)
Gpt: a) \(\sqrt[4]{3\left(x+5\right)}-\sqrt[4]{11-x}=\sqrt[4]{13+x}-\sqrt[4]{3\left(3-x\right)}\)
b) \(\frac{1+2\sqrt{x}-x\sqrt{x}}{3-x-\sqrt{2-x}}=2\left(\frac{1+x\sqrt{x}}{1+x}\right)\) c) \(\sqrt{x+1}+\frac{4\left(\sqrt{x+1}+\sqrt{x-2}\right)}{3\left(\sqrt{x-2}+1\right)^2}=3\)
d) \(\sqrt{\frac{x-2}{x+1}}+\frac{x+2}{\left(\sqrt{x+2}+\sqrt{x-2}\right)^2}=1\) e) \(2x+1+x\sqrt{x^2+2}+\left(x+1\right)\sqrt{x^2+2x+2}=0\)
f) \(\sqrt{2x+3}\cdot\sqrt[3]{x+5}=x^2+x-6\)
\(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
rút gọn
\(A=\frac{2}{\sqrt{4-3\sqrt[4]{5}+2\sqrt[4]{25}-\sqrt[4]{125}}}\)
\(B=\left(\frac{\sqrt[4]{4}-\sqrt[4]{2}}{1-\sqrt[4]{2}}+\frac{1+\sqrt{2}}{\sqrt[4]{2}}\right)^2-\frac{\sqrt{1+\frac{2}{\sqrt{2}}+\frac{1}{2}}}{1+\sqrt{2}}\)