Bài 1 :
a, \(A=99^2+54.22+54.78-1\)
\(A=\left(99^2-1\right)+\left(54.22+54.78\right)\)
\(A=\left(99-1\right)\left(99+1\right)+\left(54\left(22+78\right)\right)\)
\(A=98.100+54.100=9800+5400=15200\)
b, \(B=82^2+18^2+2952\)
\(B=82^2+2952+18^2\)
\(B=82^2+2.82.18+18^2\)
\(B=\left(82+18\right)^2=100^2=10000\)
Bài 2 :
Ta có : \(2005^{2005}-2005^{2004}=2005^{2004}\left(2005-1\right)=2005^{2004}.2004⋮2004\)
=> \(2005^{2005}-2005^{2004}⋮2004\) ( ĐPCM )