Ta có :
\(100a\left(a+1\right)+bc\)
\(=100a^2+100a+bc\)
\(=100a^2+10.10a+bc\)
\(=100a^2+10a\left(b+c\right)+bc\)
\(=100a^2+10ab+10ac+bc\)
\(=10a\left(10a+b\right)+c\left(10a+b\right)\)
\(=\left(10a+b\right)\left(10a+c\right)\)
\(\Rightarrowđpcm\)
Ta có :
\(100a\left(a+1\right)+bc\)
\(=100a^2+100a+bc\)
\(=100a^2+10.10a+bc\)
\(=100a^2+10a\left(b+c\right)+bc\)
\(=100a^2+10ab+10ac+bc\)
\(=10a\left(10a+b\right)+c\left(10a+b\right)\)
\(=\left(10a+b\right)\left(10a+c\right)\)
\(\Rightarrowđpcm\)
Chứng minh rằng:
(10a + 5)2 = 100a . (a + 1) + 25.
Từ đó em hãy nêu cách tính nhẩm bình phương của một số tự nhiên có tận cùng bằng chữ số 5.
Áp dụng để tính: 252, 352, 652, 752.
Câu1:Chứng minh đẳng thức
a) (x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
b) (x+y)(x+y+x)-2(x+1)(y+1)+2=x^2+y^2
c) Cho ab=1. Chứng minh đẳng thức a(b+1)+b(a+1)=(a+1)(b+1)
Câu 2: Tìm x biết (x-3)(x+x^2)+2(x-5)(x+1)-x^3=12
Cho a+b+c= 2p. Chứng minh hằng đẳng thức
2bc + b2 + c2 -a2 = 4p(p-a)
1) Làm tính nhân
a) 𝑥.(𝑥2–5)
b) 3𝑥𝑦(𝑥2−2𝑥2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
Cho biểu thức : P = \(\dfrac{2a-1}{3a-1}+\dfrac{5-a}{3a+1}\)
a , Tìm giá trị P khi a = -1
b , Tìm giá trị của P khi 10a^2+5a=3
c , Tìm GTNN của biểu thức a = \(\dfrac{3y^2-4y}{1+y^2}\)
a^4-8: áp dụng hằng đẳng thức để đưa biểu thức viết dạng tíc
Chứng minh các đẳng thức sau
a. (a+b)(a²-ab+b²)=a³+b³
1) Làm tính nhân
a) 𝑥.(𝑥^2–5)
b) 3𝑥𝑦(𝑥^2−2𝑥^2𝑦+3)
c) (2𝑥−6)(3𝑥+6)
d) (𝑥+3𝑦)(𝑥^2−𝑥𝑦)
2)Tính (áp dụng Hằng đẳng thức)
a) (2𝑥+5)(2𝑥−5)
b) (𝑥−3)^2
c) (4+3𝑥)^2
d) (𝑥−2𝑦)^3
e) (5𝑥+3𝑦)^3
f) (5−𝑥)(25+5𝑥+𝑥^2)
g) (2𝑦+𝑥)(4𝑦^2−2𝑥𝑦+𝑥^2)
3)Phân tích các đa thức sau thành nhân tử
a) 𝑥^2+2𝑥
b) 𝑥^2−6𝑥+9
c) 5(𝑥–𝑦)–𝑦(𝑦–𝑥)
d) 2𝑥−𝑦^2+2𝑥𝑦−𝑦
a) 6𝑥^3𝑦^4+12𝑥^2𝑦^3−18𝑥^3𝑦^2
So sánh (áp dụng hằng đẳng thức)
\(A = \sqrt{1969} + \sqrt{1971} \) và \(B=2\sqrt{1970} \)