Cho tam giác đều ABC có diện tích là S. Các điểm D,E,F theo thứ tự thuộc các cạnh AB, BC, CA sao cho AD=13 AB, BE=13 BC, CF=13 CA. Gọi M,N,P lần lượt là giao điểm của AE với CD, AE với BF, BF với CD.
a/ Chứng minh tam giác MNP là tam giác đều.
b/ Tính diện tích của tam giác MNP theo S
Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm D< E, F sao cho: \(\frac{AD}{AB}=\frac{BE}{BC}=\frac{CF}{CA}=\frac{1}{3}\)
Tính diện tích tam giác tạo thành bởi các đường thẳng AE, BF, CD, biết diện tích tam giác ABC là S
1.Cho hình thang ABCD (AB // CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh AD, BC theo thứ tự tại E và F . Chứng minh rằng OE = OF 2.a) Cho tam giác ABC với đường trung tuyến AM và đường phân giác trong AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích tam giác ABC là S. b) Khi cho n = 7cm, m = 3cm, hỏi rằng diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC?
cho tam giác ABC vuông tại A (AC>AB), đường cao AH. Trên tia HD lấy điểm C sao cho HD=HA. Đường vuông góc với BC tại D cắt AC tại E.
1) CMR: tam giác ADC và tam giác BEC đồng dạng. Tính độ dài đoạn BE theo AB=m.
2) Gọi M là trung điểm của đoạn BE. CMR: tam giác BHM và tam giác BEC đồng dạng và HM vuông góc với AD.
3) Tia Am cắt BC tại G. CMR: GB/BC=DH/AH+HC
Cho tam giác ABC vuông tại A,lấy D thuộc AB,E thuộc AC,F thuộc BC sao cho AD=AE,CE=CF. Tính góc DEF
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
Cho tam giác ABC nhọn có AB<AC và các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, N là điểm đối xứng với H qua M, O là trung điểm của AN. CMR:
1) ĐIểm O cách đều ba đỉnh của tam giác ABC.
2) (AB+CF)^2<(AC+BE)^2.
cho tam giác ABC; D,E,F lần lượt thuộc các cạnh AB,BC,CA sao cho AD=\(\dfrac{1}{4}AB,BE=\dfrac{1}{4},CF=\dfrac{1}{4}CA\). Chứng minh diện tích tam giác DEF < 1/2 diện tích tam giác ABC