Chương IV : Biểu thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cung Thiên Bình

1.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA.Tia phân giác của góc B cắt AC tại D

a) So sánh độ dài DA và DE

b) ED cắt đường thẳng AB ở F. Chứng minh tam giác BDF= tam giác BDC

c) Chứng minh AE// CF

2. Cho \(\dfrac{1}{c}\) = \(\dfrac{1}{2}\)( \(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)) ( với a,b,c khác o, b khác c) chứng minh rằng \(\dfrac{a}{b}\) = \(\dfrac{a-c}{c-b}\)

HELP ME

 Mashiro Shiina
3 tháng 1 2018 lúc 6:42

t k nhai hình,tốn time :v

\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)

\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)

\(\Rightarrow ac+bc=2ab\)

\(\Rightarrow ac+bc-ab=ab\)

\(\Rightarrow ac-ab=ab-bc\)

\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)

Phúc Trần
3 tháng 1 2018 lúc 7:21

A B C E D 1 2 F 1 1 2 2 1 2

a. Xét \(\Delta BDA\)\(\Delta BDE\) có:

\(BA=BE\left(gt\right)\)

\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác góc B )

\(BD\) cạnh chung

Do đó \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)

\(\Rightarrow DA=DE\) ( cạnh tương ứng )

b. Vì \(\Delta BDA=\Delta BDE\left(cmt\right)\Rightarrow\widehat{A_1}=\widehat{E_1}\) ( góc tương ứng ) và \(\widehat{D_1}=\widehat{D_2}\) ( góc tương ứng )

Ta có:

\(\widehat{A_2}=180^0-\widehat{A_1}\) ( kề bù )

\(\widehat{E_2}=180^0-\widehat{E_1}\) ( kề bù )

\(\widehat{A_1}=\widehat{E_1}\left(cmt\right)\Rightarrow\widehat{A_2}=\widehat{E_2}\)

Xét \(\Delta AFD\)\(\Delta ECD\) có:

\(\widehat{A_2}=\widehat{E_2}\left(cmt\right)\)

\(DA=DE\left(cmt\right)\)

\(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh )

Do đó \(\Delta AFD=\Delta ECD\left(g.c.g\right)\)

\(\Rightarrow FD=CD\) ( cạnh tương ứng )

Ta có:

\(\widehat{FDB}=\widehat{D_1}+\widehat{FDA}\)

\(\widehat{CDB}=\widehat{D_2}+\widehat{CDE}\)

\(\widehat{D_1}=\widehat{D_2}\) ( chứng minh câu a ) và \(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh ) \(\Rightarrow\widehat{FDB}=\widehat{CDB}\)

Xét \(\Delta BDF\)\(\Delta BDC\) có:

\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác của góc B )

\(BD\) cạnh chung

\(\widehat{FDA}=\widehat{CDE}\left(cmt\right)\)

Do đó \(\Delta BDF=\Delta BDC\left(g.c.g\right)\)

Còn bài 2 thì Mashiro Shiina lm rồi


Các câu hỏi tương tự
An
Xem chi tiết
pham hong thai
Xem chi tiết
Nguyễn Minh Lan
Xem chi tiết
Nguyễn Phú Hào
Xem chi tiết
Trần Hồ Phương Uyên
Xem chi tiết
Pé Chảnh
Xem chi tiết
Pé Chảnh
Xem chi tiết
Cá Cơm Nho Nhỏ
Xem chi tiết
Vũ Mai Hương
Xem chi tiết