1.a) Ta có \(AH^2=BH.CH\)⇔ \(BH=\frac{AH^2}{CH}=\frac{36}{8}=\frac{9}{2}\)
⇒ \(BC=BH+CH=\frac{9}{2}+8=\frac{25}{2}\)
\(AB^2=BH.BC\)\(=\frac{9}{2}.\frac{25}{2}=\frac{225}{4}\)⇒\(AB=\frac{15}{2}\)
\(AC^2=AH^2+CH^2=6^2+8^2=100\)⇒\(AC=10\)
b) △AHC vuông tại H , HD⊥ AC
⇒ HD.AC=AH.HC⇒HD=\(\frac{24}{5}\)
\(AD^2=AH^2-HD^2=6^2-\left(\frac{24}{5}\right)^2=\frac{324}{25}\)
⇒ \(AD=\frac{18}{5}\)⇒ δAHD=\(\frac{1}{2}AD.DH=\frac{1}{2}.\frac{18}{5}.\frac{24}{5}=\frac{216}{25}\)