Câu 2
a: ĐKXĐ: a>=0; a<>4
b: \(M=\dfrac{\sqrt{a}+2+\sqrt{a}-2-2\sqrt{a}+1}{a-4}\)
\(=\dfrac{1}{a-4}\)
Câu 2
a: ĐKXĐ: a>=0; a<>4
b: \(M=\dfrac{\sqrt{a}+2+\sqrt{a}-2-2\sqrt{a}+1}{a-4}\)
\(=\dfrac{1}{a-4}\)
1.Cho biểu thức Q=\(\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right)\): \(\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)a) Rút gọn Q với a>0, a\(\ne4,a\ne\)1b) Tìm giá trị của a để Q dương2.Cho biểu thức P=\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{\sqrt{x}+1}+\dfrac{2}{x-1}\right)\)a) Tìm điều kiện của x để P xác định và rút gọn Pb) Tìm các giá trị của x để P<0c) Tính giá trị của P khi \(x=4-2\sqrt{3}\)
Rút gọn:
\(A=\left(\dfrac{\sqrt{a}+2}{a+2\sqrt{a}+1}-\dfrac{\sqrt{a}-2}{a-1}\right).\dfrac{\sqrt{a}+1}{\sqrt{a}}\left(a>0,a\ne1\right)\)
Cho biểu thức \(M=(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}):(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1})\) ( với a>0; a \(\ne\) 1, a \(\ne\) 4)
a. Rút gọn M
b. Tìm a để M<\(\dfrac{1}{6}\)
Cho biểu thức M= \(\left(\dfrac{a\sqrt{a}-1}{\sqrt{a}-1}+\sqrt{a}\right).\dfrac{1}{\sqrt{a}+1}\)Với ( \(a\ge0,a\ne1\))a) Rút gọn biểu thức Mb) Tính giá trị của M tại a = 2020-2\(\sqrt{2019}\)
Cho biểu thức \(M=\left(\dfrac{1}{a-\sqrt{a}}+\dfrac{1}{\sqrt{a}-1}\right):\dfrac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
a/ Rút gọn M với \(a>0,a\ne1\)
b/ So sánh M với 1
c/ Tính giá trị M khi \(a=3-2\sqrt{2}\)
Cho biểu thức \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)\cdot\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\)
a. Rút gọn A
b. Tìm \(x\) để \(A>-6\)
c. Tính A khi \(a^2-3=0\)
A=\(\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}+\dfrac{\sqrt{x}+1}{1-\sqrt{x}}-\dfrac{2}{x-1}\right):\dfrac{-2}{\sqrt{x}+1}\)
với x>=0; x khác 1
a) Rút gọn A
b) tìm giá trị nguyên của x để A có giá trị nguyên
DẠNG TOÁN RÚT GỌN:
1) a) Chứng tỏ: \(\dfrac{5+3\sqrt{5}}{\sqrt{5}}+\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)=\sqrt{3}\)
b) Cho P= \(a-\left(\dfrac{1}{\sqrt{a}-\sqrt{a-1}}-\dfrac{1}{\sqrt{a}+\sqrt{a+1}}\right)\left(a>=1\right)\). Chứng tỏ P >= 0
2) Giải phương trình: a) 3x +\(\sqrt{2}\) = 2(x+\(\sqrt{2}\))
b) \(3\sqrt{x-2}-\sqrt{x^2-4}=0\)
3) Thực hiện phép tính:
a) \(\sqrt[.3]{2-10}-\sqrt{36+64}\)
b) \(\sqrt{\left(\sqrt{2}-3\right)^2}+\sqrt[3]{\left(\sqrt{2}-5\right)^3}\)
4) Cho biểu thức: P= \(\dfrac{2a^2+4}{1-a^3}-\dfrac{1}{1+\sqrt{a}}-\dfrac{1}{1-\sqrt{a}}\)
a) Tìm điều kiện của a để P xác định
b) Rút gọn biểu thức P
Cho biểu thức sau:
A= \(2.\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{x^2-x}\)
a, tìm điều kiện và rút gọn A
b, tìm x để A = \(\sqrt{2021}\)
\(A=\left(\dfrac{1}{\sqrt{a}-1}+\dfrac{1}{\sqrt{a}+1}\right)\div\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
a) Tìm điều kiện của a để A có nghĩa.
b) Rút gọn A.
c) Tìm các giá trị của a để A > 0.