Tìm điều kiện xác định
\(A=\sqrt{x^2-5x+6}\)
\(B=\dfrac{x}{\sqrt{7x^2-8}}\)
\(C=\sqrt{-9x^2+6x-1}-\dfrac{1}{\sqrt{x^2+x+2}}\)
\(D=\sqrt{3-x^2}-\sqrt{\dfrac{2021}{3x+2}}\)
\(E=\sqrt{\dfrac{3x^2}{2x+1}-1}\)
\(F=\sqrt{25x^2-10x+1}+\dfrac{1}{1-5x}\)
a,\(\sqrt{x^2-5x+4}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
b,\(\sqrt{x^2-3x+2}+\sqrt{x^2-4x+3}=2\sqrt{x^2-5x=4}\)
c,\(\sqrt{4x^2+9x+5}+\sqrt{2x^2+x-1}=\sqrt{x^2-1}\)
Giải các phương trình:
a) \(\left(3x-1\right)\left(3x+1\right)=x\left(1+8\sqrt{x+1}\right)\)
b) \(5x^2-5x\sqrt{x^2+x+4}+2x+5=0\)
c) \(9x^2+8x+9=9\left(x+1\right)\sqrt{2x^2+1}\)
d) \(5x^2+2x+2=5x\sqrt{x^2+x+1}\)
e) \(5x^2+20x-12=5\left(x-2\right)\sqrt{3x^2+x}\)
Tìm x
\(a.\sqrt{2+\sqrt{3+\sqrt{x}}=3}\)
\(b.\sqrt{x^2-4}+\sqrt{x+2}=0\)
\(c.\sqrt{x^2-5x+6}+\sqrt{x+1}=\sqrt{x-2}+\sqrt{x^2-2x-3}\)
Giải các phương trình:
a) \(\sqrt{x^2-3x+2}=\sqrt{x-1}\)
b) \(\sqrt{x^2-4x+4}=\sqrt{4x^2-12x+9}\)
c) \(\sqrt{x^2-5x+6}=\sqrt{x-2}\)
d) \(\sqrt{4x^2-4x+1}=\sqrt{x^2-6x+9}\)
Giải pt : a) \(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
b) \(\left(x-1\right)\sqrt{x^2+5}+x=x^2+1\)
c)\(\sqrt{x+2}+2x-10=\sqrt{2x-3}\)
d)\(\sqrt{2x-3}-\sqrt{x}=2x-6\)
e) \(\sqrt{4x^2+5x+1}-2\sqrt{x^2-x+1}=9x-3\)
giải phương trình:
1. \(x\left(x+5\right)=2\sqrt[3]{x^2+5x-2}-2\)
2. \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
1. \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
2. \(x+\sqrt{17-x^2}+x\sqrt{17-x^2}=9\)
Giải các phương trình sau;
a) \(\sqrt{3}.x-2=x \)
b)\(\sqrt{3x-2}=2- \sqrt{3} \)
c)4\(\sqrt{x+1}=x^{2}-5x+14 \)