\(1+2\sin x.\cos x=\sin x+2\cos x\)
\(\Leftrightarrow\left(2\sin x.\cos x-\sin x\right)-\left(2\cos x-1\right)=0\)
\(\Leftrightarrow\left(2\cos x-1\right)\left(\sin x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\cos x=\dfrac{1}{2}\\\sin x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm\dfrac{\pi}{3}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\left(k\in Z\right)\)