\(\frac{1+2+3+...+100}{1.2.3...100}\)
Đặt: A = 1+2+3+...+100
Số số hạng của A là: (100-1) : 1 + 1 = 100 (số)
Tổng A là: (100+1).100:2 = 5050
Đặt B = 1.2.3....100 = 100!
=> \(\frac{1+2+3+...+100}{1.2.3...100}=\frac{5050}{100!}\)
Đặt \(A=1+2+3+...+99+100\)
\(\Rightarrow A=100+99+98+...+2+1\)
\(\Rightarrow A=\left(1+100\right)+\left(2+99\right)+\left(3+98\right)+...+\left(100+1\right)\) ( 50 cặp số )
\(\Rightarrow A=101+101+101+...+101\) ( 50 số )
\(\Rightarrow A=101.50\)
\(\Rightarrow A=5050\)
Vậy A = 5050
Đặt A=\(\frac{1+2+3+...+99+100}{1\cdot2\cdot3\cdot...\cdot100}\)
A=\(\frac{100\cdot101:2}{100!}\)
A\(=\frac{5050}{100!}\)