1+1+1+1+1+1+1+1+1+1+1+1x1111= ?
Tính A=(1-1/1+2)*(1-1/1+2+3)*......*(1-1/1+2+3+....+2006)
1/(1+2)+1/(1+2+3)+....+1/(1+2+...+2017)
chứng minh \(\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)
cho A =\(\dfrac{1}{12}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}+\dfrac{1}{20}\)SO SÁNH A VỚI \(\dfrac{1}{2}\)
-1-1/2-1/4-1/8-...-1/1024
tính hợp li A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}}{\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)-\dfrac{1}{2}\cdot\dfrac{1}{3}\cdot\dfrac{1}{4}}\)
CMR :1/n + 1 + 1/n + 2 + 1/n + 3 + ... + 1/2n > 1/2 với n là số tự nhiên, n > 1
Cho A= \(\dfrac{1}{1.102}+\dfrac{1}{2.103}+.....+\dfrac{1}{299.400}\)
Chứng minh rằng: A=\(\dfrac{1}{101}\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{101}\right)-\left(\dfrac{1}{300}+\dfrac{1}{301}+...+\dfrac{1}{400}\right)\right]\)
Help me please.....
Cho a,b>0 . Chứng minh \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) (1). Áp dụng cm các bđt sau:
a)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\) với a,b,c>0
b)\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge2\left(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\right)\) với a,b,c>0
c)Cho a,b,c>0 tm \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=4\) . CM \(\frac{1}{2a+b+c}+\frac{1}{a+2b+c}+\frac{1}{a+b+2c}\le1\)
d) Cho a,b,c là độ dài 3 cạnh của 1 tam giác, p là nửa chu vi .CMR:
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)