\(\left(x-2\right)\left(x+3\right)=50\Leftrightarrow x^2+3x-2x-6-50=0\Leftrightarrow\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{225}{4}=0\)\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{225}{4}\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\sqrt{\dfrac{225}{4}}\\x-\dfrac{1}{2}=-\sqrt{\dfrac{225}{4}}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}+\dfrac{1}{2}=8\\x=-\dfrac{15}{2}+\dfrac{1}{2}=-7\end{matrix}\right.\)
(x−2)(x+3)= 50
x2 + x - 6 - 50 = 0
x2 + x - 56 = 0
(x - 7).( x+8) = 0
\(\Rightarrow\left[{}\begin{matrix}x=7\\x=-8\end{matrix}\right.\)