Tìm tập xác đinh của các hàm số sau
29 , \(y=\frac{tanx+cosx}{sinx}\)
30 , \(y=\frac{1}{sinx}-\frac{1}{cosx}\)
31 , \(y=\frac{cosx+cotx}{sinx}\)
32 , \(y=\frac{tanx+cotx}{1-sin2x}\)
33 , \(y=tanx+\frac{1}{cos\frac{x}{2}}\)
34 , \(y=\frac{1-tanx}{1-cotx}\)
35 , \(y=\frac{cotx}{cosx-1}\)
36 , \(y=\frac{3}{sin^2x-cos^2x}\)
37 , \(y=\frac{2}{cosx-cos3x}\)
38 , \(y=\frac{\sqrt{x}}{sin\pi x}\)
39 , \(y=\frac{2-cosx}{1+tan\left(x-\frac{\pi}{3}\right)}\)
Tìm TXĐ( giúp mình vs ạ :(( )
a) y=sin 1\x
b) y=tanx+cotx-4
c) y= tanx\cosx-1
d) y=sin(x+1\x-1)
e) y=tan(3x+pi\4)
f) y= tan2(x+pi\3)\cosx+1
g) y=cot(x-3 pi)
tìm TXĐ:
a/ y= \(\frac{2}{cosx-3cosx}\)
b/ \(y=tan\frac{x}{3}\)
c/ \(y=tanx+cotx\)
Xét tính chẵn, lẻ của các hàm số sau:
a/ y=\(\frac{sinx+1}{cosx}\)
b/y=\(tan^2x\)
c/y=\(|cotx|\)
d/y=\(sin(\frac{\pi}{2}-x)\)
Tìm tập xác định của hàm số:
a) y = \(\frac{2sinx-1}{tanx+1}\)
b) y = \(\frac{3-cotx}{tanx-1}\)
tìm txd của hàm số
y = \(\dfrac{sin\left(x-\dfrac{\pi}{3}\right)}{cos2x+1}+cotx\)
Tìm tập xác định của hàm số :
1.y=\(\frac{1}{sinx-cosx}\)
2.y=\(\frac{3}{sin^2x-cos^2x}\)
3.y=\(\frac{cotx}{cosx-1}\)
3.y=\(\frac{1-sinx}{sinx+1}\)
4.y=\(\frac{1-2cosx}{sin3x-sinx}\)
5.y=\(tanx+cotx\)
6.y=\(\frac{2x}{1-sin^2x}\)
7.y=\(tan\left(3x-1\right)\)
8.y=\(sin\left(x-1\right)\)
9.y=\(\sqrt{\frac{1-sinx}{1+cosx}}\)
10.y=\(\sqrt{sinx+2}\)
khẳng định nào sau đây đúng? vì sao
A: hàm số y= tanx nghịch biến trên khoảng \(\left(\frac{-\pi}{4};\frac{\pi}{4}\right)\)
B: hàm số y=sinx đồng biến trên khoảng\(\left(0;\pi\right)\)
C: hàm số y=cotx nghịch biến trên khoảng \(\left(0;\frac{\pi}{2}\right)\)
D: hàm số y= cosx đồng biến trên khoảng\(\left(0;\pi\right)\)
có ai biết làm bài này bằng phương pháp nhanh không?
xét hàm số y = f(x) = \(\cos\frac{x}{2}\).
a) chứng minh rằng với mỗi số nguyên k , f\(\left(x+k4\pi\right)\)=f(x) với mọi x .
b) lập bảng biến thiên của hàm số y = \(\cos\frac{x}{2}\) trên đoạn \(\left[-2\pi;2\pi\right]\).
c) vẽ đồ thị các hàm số y = \(\cos x\) và y = \(\cos\frac{x}{2}\) trong cùng một hệ tọa độ vuông góc Oxy .
d) trong mặt phẳng tọa độ Oxy , xét phép biến hình F biến mỗi điểm (x ; y) thành (x' ; y') sao cho x'=2x và y'=y . chứng minh rằng F biến đồ thị hàm số y = \(\cos x\) thành đồ thị hàm số y = \(\cos\frac{x}{2}\) .